ON THE CAUCHY AND INVARIANT MEASURE PROBLEM FOR THE PERIODIC ZAKHAROV SYSTEM

JEAN BOURGAIN

0. Introduction. The purpose of this preliminary paper is to prove local and global existence and regularity theorems for the 1-dimensional Zakharov model

$$\begin{cases} iu_{t} = -u_{xx} + nu \\ n_{tt} - n_{xx} = (|u|^{2})_{xx} \\ u(x, 0) = \varphi, \quad n(x, 0) = a, \quad \partial_{t} n(x, 0) = b \end{cases}$$
 (0.1)

in the space periodic case. Apparently no results are known so far on this problem, if one considers the periodic setting (*). Equations (0.1) are suspected to be nonintegrable, contrary to the nonlinear Schrödinger equation (NLSE) $iu_t + u_{xx} + u|u|^2 = 0$. The technique used here is a Fourier analysis approach in the same spirit as earlier works in [B1], [B2] on NLSE and KdV type equations. In particular we prove following local wellposedness theorem.

THEOREM 1. There are Sobolev exponents $0 < \sigma < s < 1/2 < s_1 < 1$ such that (0.1) is locally wellposed for data (u, a, b) satisfying

$$\begin{split} \varphi \in H^s(\mathbb{T}), & \sup_k |k|^{s_1} |\hat{\varphi}(k)| < \infty \\ \sup_k |k|^{-\sigma} |\hat{a}(k)| < \infty & \text{and} & \sup_k |k|^{-\sigma-1} |\hat{b}(k)| < \infty \,. \end{split}$$

Here one should think of σ close to 0, s close to 1/2. In particular, for (H^1, L^2, H^{-1}) -data, there is the following global result.

Theorem 2. The system (0.1) is globally wellposed for data $\varphi \in H^1$, $a \in L^2$, $b \in H^{-1}$.

Due to the conservation of the Hamiltonian

$$H_Z = \frac{1}{2} \int_{\mathbb{T}} \left[|u_x|^2 + \frac{1}{2} (n^2 + V^2) + n|u|^2 \right] dx \tag{0.2}$$

Received 28 December 1993. Revision received 27 April 1994.

(*) There have been a number of investigations on this issue in the nonperiodic case, starting from the paper [SS] in 1-dimension.