POINTWISE ERGODIC THEOREMS FOR RADIAL AVERAGES ON SIMPLE LIE GROUPS I

AMOS NEVO

1. Introduction, definitions, and statements of results.

1.1. Measurable actions. Let us begin by recalling some well-known facts which are needed in order to establish the existence of the operators which are the subject of the present paper. Let G be a Hausdorff locally compact second countable (lcsc) group and denote by \mathscr{B}_{G} the σ-algebra of Borel subsets of G. Let $(X, \mathscr{B}, \lambda)$ be a standard Borel space, by which we mean that \mathscr{B} is a countably generated and countably separated σ-algebra, and λ a σ-finite measure on $\mathscr{B} . G$ is said to have a Borel measurable action on X, if there is a map $f: G \times X \rightarrow X$, satisfying $f\left(g_{1} g_{2}, x\right)=f\left(g_{1}, g_{2} x\right), f(e, x)=x$ for each $g \in G$ and $x \in X$, such that f is a measurable map from $\left(G \times X, \mathscr{B}_{G} \times \mathscr{B}\right)$ to (X, \mathscr{B}). The G-action, which will be denoted $f(g, x)=g x$ will be called measure preserving if $\lambda(g E)=\lambda(E)$ for each $g \in G$ and $E \in \mathscr{B}$. In the sequel, by an action of G we mean a Borel-measurable measure-preserving action. However, a function on X will be called measurable if it is measurable relative to the σ-algebra obtained as the completion of \mathscr{B} with respect to λ, and we do not insist that it be a Borel function. We refer to Appendix A for further discussion.

There is a natural representation of G associated with an action, by isometric automorphisms of $L^{p}(X), 1 \leqslant p \leqslant \infty$, which is given by $(\pi(g) f)(x)=f\left(g^{-1} x\right)$. As is well known, the representation π is (strongly) continuous; namely, for each $f \in L^{p}(X), 1 \leqslant p<\infty$, the map $g \mapsto \pi(g) f$ is a continuous map from G to $L^{p}(X)$, where we take the norm topology on $L^{p}(X)$. The action is called ergodic if every G-invariant set has measure zero, or its complement has measure zero. If the measure λ is finite, ergodicity is equivalent to the absence of G-invariant functions in $L^{2}(X)$, other that the constant functions.

To each complex bounded Borel measure μ on G, there corresponds an operator $\pi(\mu)$, with norm bounded by $\|\mu\|_{1}$ in every $L^{p}(X), 1 \leqslant p \leqslant \infty$, given by:

$$
\pi(\mu) f(x)=\int_{G} f\left(g^{-1} x\right) d \mu(g) .
$$

The last equation should be interpreted as follows: Given $f \in L^{p}(X)$ and $f^{\prime} \in L^{q}(X)$, where $(1 / p)+(1 / q)=1$, consider the measurable function $(g, x) \mapsto f\left(g^{-1} x\right) f^{\prime}(x)$

[^0]
[^0]: Received 1 March 1993. Revision received 28 February 1994.
 Supported by the Israeli National Academy of Science and Humanities-Wolfson Grant.

