POINTWISE ERGODIC THEOREMS FOR RADIAL AVERAGES ON SIMPLE LIE GROUPS I

AMOS NEVO

1. Introduction, definitions, and statements of results.

1.1. Measurable actions. Let us begin by recalling some well-known facts which are needed in order to establish the existence of the operators which are the subject of the present paper. Let G be a Hausdorff locally compact second countable (lcsc) group and denote by \mathscr{B}_G the σ -algebra of Borel subsets of G. Let $(X, \mathscr{B}, \lambda)$ be a standard Borel space, by which we mean that \mathscr{B} is a countably generated and countably separated σ -algebra, and λ a σ -finite measure on \mathscr{B} . G is said to have a Borel measurable action on X, if there is a map $f: G \times X \to X$, satisfying $f(g_1g_2, x) = f(g_1, g_2x)$, f(e, x) = x for each $g \in G$ and $x \in X$, such that f is a measurable map from $(G \times X, \mathscr{B}_G \times \mathscr{B})$ to (X, \mathscr{B}) . The G-action, which will be denoted f(g, x) = gx will be called measure preserving if $\lambda(gE) = \lambda(E)$ for each $g \in G$ and $E \in \mathscr{B}$. In the sequel, by an action of G we mean a Borel-measurable measurable relative to the σ -algebra obtained as the completion of \mathscr{B} with respect to λ , and we do not insist that it be a Borel function. We refer to Appendix A for further discussion.

There is a natural representation of G associated with an action, by isometric automorphisms of $L^p(X)$, $1 \le p \le \infty$, which is given by $(\pi(g)f)(x) = f(g^{-1}x)$. As is well known, the representation π is (strongly) continuous; namely, for each $f \in L^p(X)$, $1 \le p < \infty$, the map $g \mapsto \pi(g)f$ is a continuous map from G to $L^p(X)$, where we take the norm topology on $L^p(X)$. The action is called ergodic if every G-invariant set has measure zero, or its complement has measure zero. If the measure λ is finite, ergodicity is equivalent to the absence of G-invariant functions in $L^2(X)$, other that the constant functions.

To each complex bounded Borel measure μ on G, there corresponds an operator $\pi(\mu)$, with norm bounded by $\|\mu\|_1$ in every $L^p(X)$, $1 \le p \le \infty$, given by:

$$\pi(\mu)f(x) = \int_G f(g^{-1}x) d\mu(g).$$

The last equation should be interpreted as follows: Given $f \in L^p(X)$ and $f' \in L^q(X)$, where (1/p) + (1/q) = 1, consider the measurable function $(g, x) \mapsto f(g^{-1}x)f'(x)$

Received 1 March 1993. Revision received 28 February 1994.

Supported by the Israeli National Academy of Science and Humanities-Wolfson Grant.