REMOVABLE BOUNDARY SINGULARITIES FOR SOLUTIONS OF SOME NONLINEAR DIFFERENTIAL EQUATIONS

YUAN-CHUNG SHEU

1. Introduction. Suppose D is a bounded domain in \mathbb{R}^d with a C^2 boundary ∂D and F is a closed subset of ∂D . We investigate a boundary value problem:

$$\begin{cases} \Delta u = u^{\alpha} & \text{in } D, \\ u = f & \text{on } \partial D \backslash F \end{cases} \tag{1}$$

where $\alpha > 1$ and f is a nonnegative continuous function on ∂D , and we study the condition on F in terms of the Hausdorff dimension under which boundary singularities of a solution of (1) are removable. Throughout this paper a solution of problem (1) always means a nonnegative solution.

Suppose g is an increasing function on an interval [0, a] such that g(0) = 0. For any $A \subset \mathbb{R}^d$ and any $0 < \varepsilon \le a$ we set $g - m_{\varepsilon}(A) = \inf \sum_i g(r_i)$ where infimum is taken over all countable covering of A by open ball $B_{r_i}(x_i)$ of center x_i and radius $r_i \le \varepsilon$. The Hausdorff measure g - m corresponding to g is defined by the formula $g - m(A) = \lim_{\varepsilon \to 0} g - m_{\varepsilon}(A)$. We denote $\Lambda^s - m(A)$ the Hausdorff measure of A corresponding to $g(t) = t^s$. The Hausdorff dimension H - dim(A) is defined as the supremun of s such that $\Lambda^s - m(A) > 0$.

In Section 2 we interpret (1) as the classical problem:

$$\begin{cases} u \in C^{2}(D) \text{ and } \Delta u = u^{\alpha} \text{ in } D, \\ \lim_{x \in D, x \to y} u(x) = f(y) \text{ for all } y \in \partial D \backslash F. \end{cases}$$
(1')

We set $\beta = d - ((\alpha + 1)/(\alpha - 1))$ and $\gamma = (\alpha + 1)/(\alpha - 1)$, and we establish the following.

THEOREM 1. The boundary value problem (1') has one parameter family of solutions in the following two cases:

- (A) $d < (\alpha + 1)/(\alpha 1)$ and F is not empty;
- (B) $d > (\alpha + 1)/(\alpha 1)$ and Λ^s -m(F) > 0 for some $\beta < s \le d 1$.

Received 3 June 1993.