THE RADIAL BEHAVIOR OF A QUASICONFORMAL MAPPING

PEKKA KOSKELA

1. Introduction. Harmonic measure in simply connected domains is singular with respect to the measure μ if for each univalent analytic function f of the unit disk there is a set of full length on the unit circle whose image under f is of μ-measure zero. Øksendal [Ø1], [Ø2] verified that harmonic measure is singular with respect to the area measure. Makarov extended this result in his remarkable paper [M1] by establishing that harmonic measure is singular with respect to the λ-dimensional Hausdorff measure for any $\lambda>1$.
A natural generalization of this result to the setting of quasiconformal mappings would be that, for a given K-quasiconformal mapping f of B^{n} into \mathbb{R}^{n}, there exists a set E of full $(n-1)$-dimensional area on the boundary of B^{n} such that the Hausdorff dimension of $f(E)$ is $n-1$. However, it is well known that this generalization fails, as is easily seen by considering the so-called snowflake map of the unit disk in the plane for which the image of each set of positive length has Hausdorff dimension strictly greater than 1 ; see Example 4.1 below.

We remind the reader that a K-quasiconformal mapping of B^{n} into \mathbb{R}^{n} is a homeomorphism f of B^{n} into \mathbb{R}^{n} that belongs to the local Sobolev space $W_{\text {loc }}^{1, n}\left(B^{n}\right)$ and satisfies

$$
\left|f^{\prime}(x)\right|^{n} \leqslant K J_{f}(x)
$$

for almost every $x \in B^{n}$. Notice that, by the analog of Beurling's theorem, f has a radial limit for each $w \in \partial B^{n}$ outside a set of vanishing conformal capacity; in particular, outside a set of Hausdorff dimension zero. In Theorem A below and in what follows, we denote the union of the radial limits of f for a set E on $S^{n-1}=\partial B^{n}$ by $f(E)$.

We establish the following result that is essentially sharp by the aforementioned example.

Theorem A. Let f be a K-quasiconformal mapping of B^{n} into \mathbb{R}^{n}. Then for each $0<\lambda \leqslant n-1$ there exists a set E of zero λ-dimensional Hausdorff measure on S^{n-1} such that the Hausdorff dimension of the image of $S^{n-1} \backslash E$ is at most λ^{\prime}, where $\lambda^{\prime}<n$ depends only on the dilatation K of f, λ, and n. In particular, there is a set F of

[^0]
[^0]: Received 15 July 1993.
 Author's research partially supported by a Rackham Faculty Fellowship and NSF grant DMS9305742.

