# REPRESENTATIONS OF AFFINE LIE ALGEBRAS, PARABOLIC DIFFERENTIAL EQUATIONS, AND LAMÉ FUNCTIONS 

PAVEL I. ETINGOF and ALEXANDER A. KIRILLOV, JR.

Introduction. We start with consideration of the Wess-Zumino-Witten model of conformal field theory on a torus. This is, we consider an affine Lie algebra $\hat{\mathfrak{g}}$ corresponding to some simple finite-dimensional Lie algebra $\mathfrak{g}$. For technical reasons, it is more convenient to work with a twisted realization of $\hat{g}$. Next, we consider Verma modules $M_{\lambda, k}$ over $\hat{\mathfrak{g}}$. If $V$ is a representation of the finite-dimensional algebra $\mathfrak{g}$ then by definition a vertex operator $\Phi(z): M_{\lambda, k} \rightarrow M_{v, k} \otimes V$ is an operator-valued formal Laurent series in $z$ satisfying the following commutation relations with the elements of $\hat{\mathfrak{g}}$ :

$$
\Phi(z) a \otimes t^{m}=\left(\left(a \otimes t^{m}\right) \otimes 1+z^{m} 1 \otimes a\right) \Phi(z) .
$$

Let $M_{\lambda_{i}, k}, i=0 \ldots n$ be a collection of Verma modules such that $\lambda_{0}=\lambda_{n}$, and let $\Phi^{i}\left(z_{i}\right): M_{\lambda_{i}, k} \rightarrow M_{\lambda_{i-1}, k} \otimes V_{i}$ be vertex operators. Then we can consider the following "correlation function on the torus":

$$
\mathscr{F}\left(z_{1} \ldots z_{n}, q, h\right)=\left.\operatorname{Tr}\right|_{M_{\lambda_{0}, k}}\left(\Phi^{1}\left(z_{1}\right) \ldots \Phi^{n}\left(z_{n}\right) q^{-\partial} e^{h}\right),
$$

where $\partial$ is the grading operator in Verma modules ${ }^{1}$ and $h \in \mathfrak{h}_{\mathbb{R}}$. This function takes values in the module $V=V_{1} \otimes \cdots \otimes V_{n}$, and it is the main object of our study.

Our first goal is to derive differential equations for $\mathscr{F}$. We compute $\partial \mathscr{F} / \partial z_{i}$ using the same technique as for the usual Knizhnik-Zamolodchikov equations (see [TK], [FR]). However, this system of equations (Theorem 3.1) is not closed: it has the form

$$
z_{i} \frac{\partial}{\partial z_{i}} \mathscr{F}=A_{i}\left(z_{1} \ldots z_{n}\right) \mathscr{F}+\sum \pi_{i}\left(x_{l}\right) \frac{\partial}{\partial x_{l}} \mathscr{F},
$$

where $A_{i}$ are some operators in $V$, and the sum is taken over an orthonormal basis $x_{l}$ in $\mathfrak{h}$. Since we do not have any information about $\partial \mathscr{F} / \partial x_{l}$, this system does not allow us to determine $\mathscr{F}$. This system of equations in another form appeared first in the paper of Bernard [Ber].

[^0]
[^0]:    Received 18 October 1993.
    ${ }^{1}$ We use the symbol $\partial$ for the grading operator in twisted realization, reserving the standard notation $d$ for the untwisted grading operator; see Section 1.

