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REPRESENTATIONS OF AFFINE LIE ALGEBRAS,
PARABOLIC DIFFERENTIAL EQUATIONS, AND LAMI

FUNCTIONS

PAVEL I. ETINGOF AND ALEXANDER A. KIRILLOV, JR.

Introduction. We start with consideration of the Wess-Zumino-Witten model
of conformal field theory on a torus. This is, we consider an affine Lie algebra fi
corresponding to some simple finite-dimensional Lie algebra 9. For technical
reasons, it is more convenient to work with a twisted realization of . Next, we
consider Verma modules M,k over ft. If V is a representation of the finite-dimen-
sional algebra then by definition a vertex operator (z): M,k Mv, (R) V is an
operator-valued formal Laurent series in z satisfying the following commutation
relations with the elements of :

(z)a (R) ((a ( m) ( 1 2t- zml ( a)((z).

Let Mx,,, 0... n be a collection of Verma modules such that 20 2,, and let
(I)i(zi): M,, Mx,_I, (R) V be vertex operators. Then we can consider the following
"correlation function on the torus":

-(zl ...z,, q, h) Trlto,k(l(z)... "(z,,)q-e’),

where c is the grading operator in Verma modules and h t). This function takes
values in the module V V (R)...(R) V,, and it is the main object of our study.
Our first goal is to derive differential equations for -. We compute c3/czi using

the same technique as for the usual Knizhnik-Zamolodchikov equations (see [TK],
[FR]). However, this system ofequations (Theorem 3.1) is not closed: it has the form

Ziz Ai(Zl"’" Zn) + Z Ci(Xl)-i’
where A are some operators in V, and the sum is taken over an orthonormal basis

x in t). Since we do not have any information about t3/Ox, this system does not
allow us to determine -. This system of equations in another form appeared first
in the paper of Bernard [Ber].
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We use the symbol t3 for the grading operator in twisted realization, reserving the standard notation

d for the untwisted grading operator; see Section 1.
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