ON THE CRITICAL VALUES OF *L*-FUNCTIONS OF GL(2) AND $GL(2) \times GL(2)$

HARUZO HIDA

0. Introduction. Let F be a number field with integer ring α . Let G be an algebraic group over **Q** such that $G(A) = GL_2(F \otimes_{\mathbf{Q}} A)$ for each **Q**-algebra A. Let A be the adele ring of Q and A_f be its finite part. Then we define, for each open compact subgroup U of $G(\mathbf{A}_f)$, the modular variety Y(U) by the quotient space $G(\mathbf{Q}) \setminus G(\mathbf{A})/UZ(\mathbf{R})C_{\infty+}$, where $C_{\infty+}$ is the identity component of the standard maximal compact subgroup of $G(\mathbf{R})$, and $Z(\mathbf{R})$ is the center of $G(\mathbf{R})$. We take U to be sufficiently small so that Y(U) is naturally a Riemannian manifold of dimension $2r_1 + 3r_2$ for the number of real places r_1 and complex places r_2 of F. Let ρ be an irreducible rational representation of $G(\mathbf{Q})$ into a complex vector space $V(\rho)$. When ρ is appropriately chosen, ρ induces a representation of the fundamental group of Y(U), and we can define a locally constant sheaf (or a vector bundle) $\mathscr{L}(\rho)$ on Y(U)whose stalk is given by $V(\rho)$. Since $\mathscr{L}(\rho)$ has a natural hermitian structure, we can speak of harmonic forms having values in $\mathscr{L}(\rho)$. On the space of cuspidal harmonic forms with values in $\mathscr{L}(\rho)$, we have the Hecke operators $T(\mathfrak{A})$ for almost all prime ideals p of v. The space of cuspidal harmonic q-forms is non trivial only for q in the range $[r_1 + r_2, r_1 + 2r_2]$, and the eigenvalues of Hecke operators are independent of q. Thus we may assume $q = r_1 + r_2$. Writing $k(U; \rho)$ for the space of cuspidal harmonic q-forms with values in $\mathscr{L}(\rho)$, we take ω in $\mathscr{K}(U; \rho)$ such that $\omega | T(p) = \lambda(T(p))\omega$ for almost all p. Then by [M] or [C], we can find the largest ideal N of i such that there exists a common eigenform $\omega^{\circ} \in \mathscr{K}(U; \rho)$ invariant under $U_1(N)$ and $\omega^{\circ}|T(\not p) = \lambda(T(\not p))\omega^{\circ}$ for almost all $\not p$, where

$$U_1(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \prod_{\neq} GL_2(i_{\neq}) | a_{\neq}, b_{\neq} \in i_{\neq}, d_{\neq} - 1 \in N_{\neq} \text{ and } c_{\neq} \in N_{\neq} \right\}$$
$$\subset GL_2(F_{\mathbf{A}_f}).$$

For forms invariant under $U_1(N)$, we can define the Hecke operator T(n) for all integral ideals *n*. Because of the rationality of ρ , the system of eigenvalues $\lambda^{\sigma} = \{\lambda(T(n))^{\sigma}\}$ for $\sigma \in \text{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ occurs in $\lambda(U; \rho^{\sigma})$, and the field $\mathbf{Q}(\lambda)$ generated by $\lambda(T(n))$ for all *n* is a number field (actually $\mathbf{Q}(\lambda)$ is a *CM* field or a totally real

Received 29 March 1993. Revision received 5 October 1993.

Author partially supported by a grant from NSF and a fellowship from John Simon Guggenheim foundation. The author was a member of the Institute for Advanced Study when the first draft of this paper was written in 1991.