CORRESPONDENCES TO ABELIAN VARIETIES I

SHUN-ICHI KIMURA

Introduction. Let X and Y be smooth complete algebraic varieties over a fixed field κ. A correspondence from X to Y is an element of the Chow group of $X \times Y$ [F, Chapter 16]. Correspondences behave like morphisms: they push forward homology groups and pull back cohomology groups. When α is a correspondence from X to Y, we write $\alpha: X \vdash Y$. When $f: X \rightarrow Y$ is a morphism, its graph Γ_{f} is a subvariety of $X \times Y$, so it determines a correspondence $\left[\Gamma_{f}\right] \in C H(X \times Y)$.

Our question is: When is a given correspondence $\alpha \in C H(X \times Y)$ a graph of some morphism? There are some necessary conditions: (1) $\operatorname{dim}(\alpha)=\operatorname{dim}(X)$; (2) $\pi_{X *}(\alpha)=$ [X] where $\pi_{x}: X \times Y \rightarrow X$ is the first projection; and (3) α commutes with the diagonal, in other words, the following diagram commutes.

The conditions (1)-(3) are not sufficient in general, for example, when X is \mathbb{P}^{1} and Y contains a rational curve (Example 2.9). It seems that the existence of rational curves complicates this kind of problem.
The goal of this paper is to show that (1)-(3) are sufficient when Y is an Abelian variety (Theorem 2.7). This is not trivial even when X is a point, Spec κ. In this case, a correspondence α is an element of the Chow group of Y, and (1) means that α is a 0 -cycle, (2) means that the degree of α is 1 , and (3) means that $\alpha \times \alpha$ equals $\Delta_{Y *}(\alpha)$ in the Chow group of $Y \times Y$. Our theorem says that, when (1)-(3) are satisfied, then there is a point $P \in Y$ so that $\alpha=[P]$. The difficult point is the subtlety of the condition (3). Under the conditions (1) and (2), $\alpha \times \alpha-\Delta_{Y *}(\alpha)$ is degree 0 , and its Albanese class is always 0 , so this condition is the equality in the Albanese kernel.

The technique of Fourier transforms of Chow groups of Abelian varieties, studied in [B] and [DM], is essential. We review their results in §1.

Notation and Convention. We work in the category of algebraic schemes over a fixed field κ. When X is a scheme, $C H(X)$ is the Chow group of X, with rational coefficients. $\mathrm{CH}^{p}(X)$ is the codimension- p part of $\mathrm{CH}(X)$.

