SEQUENCES OF METRICS ON COMPACT RIEMANN SURFACES

JOHN A. RHODES

1. Definitions and statement of results. A compact Riemann surface S of genus $g \ge 2$ can be given canonical Hermitian metrics in three ways: by uniformization, by embedding the surface in its Jacobian, and by mapping the surface into projective space.

Letting \mathscr{H} denote the complex upper half plane, the uniformization theorem says $S \simeq \Gamma \backslash \mathscr{H}$, where Γ is some freely acting Fuchsian subgroup of $PSL(2, \mathbb{R})$. Since the Poincaré metric $ds_P^2 = (dz \otimes d\overline{z})/y^2$ on \mathscr{H} is invariant under the action of $PSL(2, \mathbb{R})$, ds_P^2 induces a metric on S as well. While Γ is determined only up to conjugacy in $PSL(2, \mathbb{R})$, the metric on S is independent of this choice.

The other metrics to be considered are obtained through differential forms on the surface. Using the inner product $\langle \omega, \tau \rangle = (i/2) \int_S \omega \wedge \overline{\tau}$, let $\{\omega_1, \omega_2, \ldots, \omega_g\}$ be any orthonormal basis for the holomorphic differential 1-forms. In \mathcal{H} -coordinates $\omega_i = f_i(z) dz$ for some holomorphic functions f_i .

Letting $\Lambda = \{\int_{\gamma} (\omega_1, \omega_2, ..., \omega_g) | \gamma \in H_1(S)\} \subseteq \mathbb{C}^g$ denote the period lattice for S, the analytic Jacobian of S is $J(S) = \mathbb{C}^g / \Lambda$. For any fixed $p_0 \in S$, the map $p \mapsto \int_{p_0}^p (\omega_1, \omega_2, ..., \omega_g) \mod \Lambda$ of $S \to J(S)$ is an embedding. The Euclidean metric $\sum_{i=1}^g dz_i \otimes d\overline{z}_i$ on \mathbb{C}^g induces a metric on J(S) which can be pulled back to S to give

$$ds_J^2 = \sum_{i=1}^g \omega_i \otimes \overline{\omega_i} = \sum_{i=1}^g |f_i(z)|^2 dz \otimes d\overline{z}.$$

While the basis $\{\omega_i\}_{i=1}^{q}$ was determined only up to unitary transformation, ds_J^2 is independent of that choice and of the choice of p_0 .

The last metric to be considered arises from the canonical mapping of S into complex projective space \mathbf{P}^{g-1} by $p \mapsto (f_1(p), f_2(p), \ldots, f_g(p))$. Of course this is not necessarily an embedding since S may be hyperelliptic. Denoting homogeneous coordinates in \mathbf{P}^n by (Z_0, Z_1, \ldots, Z_n) , let $t_i = Z_i/Z_0$ denote affine coordinates on the set where $Z_0 \neq 0$. Then the Fubini-Study metric, which is a globally defined, is locally given by

$$ds_{F-S}^{2} = \frac{(1 + \sum_{i=1}^{n} t_{i}\overline{t_{i}})(\sum_{i=1}^{n} dt_{i} \otimes d\overline{t_{i}}) - (\sum_{i=1}^{n} \overline{t_{i}} dt_{i}) \otimes (\sum_{i=1}^{n} t_{i} d\overline{t_{i}})}{(1 + \sum_{i=1}^{n} t_{i}\overline{t_{i}})^{2}}.$$

Received 19 September 1991. Revision received 8 June 1993.

Research supported in part by an NSF Postdoctoral Research Fellowship.