SEQUENCES OF METRICS ON COMPACT RIEMANN SURFACES

JOHN A. RHODES

1. Definitions and statement of results. A compact Riemann surface S of genus $g \geqslant 2$ can be given canonical Hermitian metrics in three ways: by uniformization, by embedding the surface in its Jacobian, and by mapping the surface into projective space.

Letting \mathscr{H} denote the complex upper half plane, the uniformization theorem says $S \simeq \Gamma \backslash \mathscr{H}$, where Γ is some freely acting Fuchsian subgroup of $\operatorname{PSL}(2, \mathbf{R})$. Since the Poincaré metric $d s_{P}^{2}=(d z \otimes d \bar{z}) / y^{2}$ on \mathscr{H} is invariant under the action of $\operatorname{PSL}(2, \mathbf{R})$, $d s_{P}^{2}$ induces a metric on S as well. While Γ is determined only up to conjugacy in $\operatorname{PSL}(2, \mathbf{R})$, the metric on S is independent of this choice.

The other metrics to be considered are obtained through differential forms on the surface. Using the inner product $\langle\omega, \tau\rangle=(i / 2) \int_{S} \omega \wedge \bar{\tau}$, let $\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{g}\right\}$ be any orthonormal basis for the holomorphic differential 1-forms. In \mathscr{H}-coordinates $\omega_{i}=f_{i}(z) d z$ for some holomorphic functions f_{i}.

Letting $\Lambda=\left\{\int_{\gamma}\left(\omega_{1}, \omega_{2}, \ldots, \omega_{g}\right) \mid \gamma \in H_{1}(S)\right\} \subseteq \mathbf{C}^{g}$ denote the period lattice for S, the analytic Jacobian of S is $J(S)=\mathbf{C}^{g} / \Lambda$. For any fixed $p_{0} \in S$, the map $p \mapsto$ $\int_{p_{0}}^{p}\left(\omega_{1}, \omega_{2}, \ldots, \omega_{g}\right) \bmod \Lambda$ of $S \rightarrow J(S)$ is an embedding. The Euclidean metric $\sum_{i=1}^{g} d z_{i} \otimes d \bar{z}_{i}$ on \mathbf{C}^{g} induces a metric on $J(S)$ which can be pulled back to S to give

$$
d s_{J}^{2}=\sum_{i=1}^{g} \omega_{i} \otimes \overline{\omega_{i}}=\sum_{i=1}^{g}\left|f_{i}(z)\right|^{2} d z \otimes d \bar{z} .
$$

While the basis $\left\{\omega_{i}\right\}_{i=1}^{g}$ was determined only up to unitary transformation, $d s_{J}^{2}$ is independent of that choice and of the choice of p_{0}.

The last metric to be considered arises from the canonical mapping of S into complex projective space \mathbf{P}^{g-1} by $p \mapsto\left(f_{1}(p), f_{2}(p), \ldots, f_{g}(p)\right)$. Of course this is not necessarily an embedding since S may be hyperelliptic. Denoting homogeneous coordinates in \mathbf{P}^{n} by $\left(Z_{0}, Z_{1}, \ldots, Z_{n}\right)$, let $t_{i}=Z_{i} / Z_{0}$ denote affine coordinates on the set where $Z_{0} \neq 0$. Then the Fubini-Study metric, which is a globally defined, is locally given by

$$
d s_{F-S}^{2}=\frac{\left(1+\sum_{i=1}^{n} t_{i} \bar{t}_{i}\right)\left(\sum_{i=1}^{n} d t_{i} \otimes d \bar{t}_{i}\right)-\left(\sum_{i=1}^{n} \bar{t}_{i} d t_{i}\right) \otimes\left(\sum_{i=1}^{n} t_{i} d \bar{t}_{i}\right)}{\left(1+\sum_{i=1}^{n} t_{i} \bar{t}_{i}\right)^{2}} .
$$

[^0]
[^0]: Received 19 September 1991. Revision received 8 June 1993.
 Research supported in part by an NSF Postdoctoral Research Fellowship.

