THE FUNDAMENTAL DOMAIN OF THE TREE OF GL(2)OVER THE FUNCTION FIELD OF AN ELLIPTIC CURVE

SHUZO TAKAHASHI

1. Introduction. Let E be an elliptic curve over a field k defined by a Weierstrass equation F(x, y) = 0 where

$$F(x, y) = y^{2} + a_{1}xy + a_{3}y - x^{3} - a_{2}x^{2} - a_{4}x - a_{6}.$$

Here k is any field. In particular, k is not assumed to be finite. Let k[E] be its affine coordinate ring, and let t = x/y be a local uniformizer at ∞ (the point at infinity). Then, k[E] can be embedded into k((t)) in such a way that $\operatorname{ord}(x) = -2$ and $\operatorname{ord}(y) = -3$, where ord is the order function of k((t)). Let $k_{\infty} = k((t))$ and $\mathcal{O}_{\infty} =$ k[[t]]. We will identify k[E] with its embedding into k_{∞} . Furthermore, let $\Gamma = GL(2, k[E]), K = GL(2, \mathcal{O}_{\infty}), G = GL(2, k_{\infty}), \text{and } Z$ be the center of G. It is well known that we can define a tree structure \mathcal{T} on G/KZ (see Serre [3] or Section 2 of this paper). Each vertex of \mathcal{T} has exactly |k| + 1 vertices adjacent to it. (|k| denotes the cardinality of k.) \mathcal{T} looks like Figure 1 when $k = F_3$ (the field of three elements). Moreover, the quotient graph $\Gamma \setminus \mathcal{T}$ is well defined. The aim of this paper is to determine the shape of $\Gamma \setminus \mathcal{T}$. More specifically, we will define a subtree \mathcal{S} of \mathcal{T} such that $\mathcal{S} \simeq \Gamma \setminus \mathcal{T}$. Thus $\Gamma \setminus \mathcal{T}$ is a tree and \mathcal{S} is a fundamental domain of \mathcal{T} modulo Γ .

To describe the shape of \mathscr{S} , we need to consider the k-rational points of E. However, since we do not have to consider E over any extension of k, in the rest of the paper, a rational point of E or a rational solution of F(x, y) = 0 always means a k-rational point or a k-rational solution. Moreover, the same letter E is used to denote the set of the rational points of E. Now, the shape of \mathscr{S} (or $\Gamma \setminus \mathscr{T}$) can be informally described as follows.

(1) There is a special vertex called o (which stands for the origin).

(2) For each l in $k \cup \{\infty\}$, there is a vertex v(l) adjacent to o. v(l)'s are all different. Thus, there are exactly |k| + 1 vertices adjacent to o.

(3) In order to describe the rest of \mathcal{S} , let $\mathcal{S}(l)$ be the connected component (subtree) of $\mathcal{S} - \{o\}$ which contains v(l). Thus, \mathcal{S} consists of o and the union of $\mathcal{S}(l)$'s (which are all disjoint for different l). The description of $\mathcal{S}(l)$ is divided into three cases depending on l as follows.

(3.1) Suppose F(x, y) = 0 has no rational solution such that x = l. In this case, $\mathcal{S}(l)$ consists of only v(l); that is, there is no other vertex adjacent to v(l) except for o. $\mathcal{S}(l)$ together with o is shown in Figure 2.

Received 27 July 1992. Revised 1 April 1993.