THE FUNDAMENTAL DOMAIN OF THE TREE OF GL(2) OVER THE FUNCTION FIELD OF AN ELLIPTIC CURVE

SHUZO TAKAHASHI

1. Introduction. Let E be an elliptic curve over a field k defined by a Weierstrass equation $F(x, y)=0$ where

$$
F(x, y)=y^{2}+a_{1} x y+a_{3} y-x^{3}-a_{2} x^{2}-a_{4} x-a_{6} .
$$

Here k is any field. In particular, k is not assumed to be finite. Let $k[E]$ be its affine coordinate ring, and let $t=x / y$ be a local uniformizer at ∞ (the point at infinity). Then, $k[E]$ can be embedded into $k((t))$ in such a way that $\operatorname{ord}(x)=-2$ and $\operatorname{ord}(y)=-3$, where ord is the order function of $k((t))$. Let $k_{\infty}=k((t))$ and $\mathcal{O}_{\infty}=$ $k[[t]]$. We will identify $k[E]$ with its embedding into k_{∞}. Furthermore, let $\Gamma=G L(2, k[E]), K=G L\left(2, \mathcal{O}_{\infty}\right), G=G L\left(2, k_{\infty}\right)$, and Z be the center of G. It is well known that we can define a tree structure \mathscr{T} on $G / K Z$ (see Serre [3] or Section 2 of this paper). Each vertex of \mathscr{T} has exactly $|k|+1$ vertices adjacent to it. ($|k|$ denotes the cardinality of k.) \mathscr{T} looks like Figure 1 when $k=F_{3}$ (the field of three elements). Moreover, the quotient graph $\Gamma \backslash \mathscr{T}$ is well defined. The aim of this paper is to determine the shape of $\Gamma \backslash \mathscr{T}$. More specifically, we will define a subtree \mathscr{S} of \mathscr{T} such that $\mathscr{S} \simeq \Gamma \backslash \mathscr{T}$. Thus $\Gamma \backslash \mathscr{T}$ is a tree and \mathscr{S} is a fundamental domain of \mathscr{T} modulo Γ.

To describe the shape of \mathscr{S}, we need to consider the k-rational points of E. However, since we do not have to consider E over any extension of k, in the rest of the paper, a rational point of E or a rational solution of $F(x, y)=0$ always means a k-rational point or a k-rational solution. Moreover, the same letter E is used to denote the set of the rational points of E. Now, the shape of \mathscr{S} (or $\Gamma \backslash \mathscr{T}$) can be informally described as follows.
(1) There is a special vertex called o (which stands for the origin).
(2) For each l in $k \cup\{\infty\}$, there is a vertex $v(l)$ adjacent to $o . v(l)$'s are all different. Thus, there are exactly $|k|+1$ vertices adjacent to o.
(3) In order to describe the rest of \mathscr{S}, let $\mathscr{S}(l)$ be the connected component (subtree) of $\mathscr{S}-\{o\}$ which contains $v(l)$. Thus, \mathscr{S} consists of o and the union of $\mathscr{S}(l)$'s (which are all disjoint for different l). The description of $\mathscr{S}(l)$ is divided into three cases depending on l as follows.
(3.1) Suppose $F(x, y)=0$ has no rational solution such that $x=l$. In this case, $\mathscr{S}(l)$ consists of only $v(l)$; that is, there is no other vertex adjacent to $v(l)$ except for o. $\mathscr{S}(l)$ together with o is shown in Figure 2.

