# TRANSCENDENTAL CYCLES ON ORDINARY K3 SURFACES OVER FINITE FIELDS 

YURI G. ZARHIN

1. Introduction. Let $Z$ be a complex algebraic $K 3$ surface, and $V(Z)$ the $\mathbb{Q}$-lattice of transcendental cycles on $Z$. By definition, $V(Z)$ is the orthogonal complement of $\mathrm{NS}(Z) \otimes \mathbb{Q}$ of the second rational cohomology group $H^{2}(Z, \mathbb{Q})$ with respect to the intersection pairing. Here $\operatorname{NS}(Z)$ is the Neron-Severi group of $Z$. It is well known that $V(Z)$ carries a natural rational Hodge structure of weight 2. In [28] we have proven that this structure is irreducible and its endomorphism algebra is a number field.

Now let $Y$ be an ordinary K3 surface over a finite field $k$ of characteristic $p$. We write $Y_{a}$ for $Y \times k(a)$ where $k(a)$ is an algebraic closure of $k$. For each rational prime $l$ different from $p$, let us consider the second twisted $l$-adic cohomology group $H^{2}\left(Y_{a}, \mathbb{Q}_{l}\right)(1)$ of $Y_{a}$. The Galois group $G(k)$ of $k$ acts on $H^{2}\left(Y_{a}, \mathbb{Q}_{l}\right)(1)$ in a natural way. One may identify $\operatorname{NS}\left(Y_{a}\right)_{l}=\operatorname{NS}\left(Y_{a}\right) \otimes \mathbb{Q}_{l}$ with a certain Galois-invariant subspace of $H^{2}\left(Y_{a}, \mathbb{Q}_{l}\right)(1)$, and a theorem of Nygaard [12] asserts that this subspace coincides with $G(k)$-invariants $H^{2}\left(Y_{a}, \mathbb{Q}_{l}\right)(1)^{G(k)}$ if $k$ is "sufficiently large". (This theorem proves a special case of a general conjecture due to Tate [19].) We define the $\mathbb{Q}_{l}$-lattice $V_{l}(Y)$ as the orthogonal complement of $\operatorname{NS}\left(Y_{a}\right)_{l}$ in $H^{2}\left(Y_{a}, \mathbb{Q}_{l}\right)(1)$ with respect to the intersection pairing. Recall that this pairing and its restriction to $\mathrm{NS}\left(Y_{a}\right)_{l}$ are nondegenerate. This gives us a canonical splitting

$$
H^{2}\left(Y_{a}, \mathbb{Q}_{l}\right)(1)=\operatorname{NS}\left(Y_{a}\right)_{l} \oplus V_{l}(Y)
$$

Since the intersection pairing is Galois-invariant, $V_{l}(Y)$ is a Galois-invariant subspace and the splitting above is also Galois-invariant. Recall that $G(k)$ is procyclic and has a canonical generator, namely, the arithmetic Frobenius automorphism

$$
\sigma_{k}: k(a) \rightarrow k(a), \quad x \rightarrow x^{q}
$$

where $q$ is the number of elements of $k$. Clearly, $q$ is an integral power of $p$. Another canonical generator of $G(k)$ is the geometric Frobenius automorphism $\varphi_{k}=\sigma_{k}^{-1}$.

In this paper we examine the characteristic polynomial

$$
P_{Y, \text { tr }}(t):=\operatorname{det}\left(i d-t \varphi_{k}, V_{l}(Y)\right) .
$$

