DEGENERATE FOURIER INTEGRAL OPERATORS IN THE PLANE

ANDREAS SEEGER

1. Introduction. Let X and Y be bounded open sets in \mathbb{R}^2 and let \mathscr{M} be a hypersurface in $X \times Y$ with conormal bundle $N^*\mathscr{M}$. Let $\Lambda = N^*\mathscr{M} \setminus \text{zero section}$ in $T^*X \times T^*Y$. We shall always assume that

(1.1)
$$\Lambda \subset T^*X \setminus 0 \times T^*Y \setminus 0$$

where now 0 refers to the zero sections in T^*X and T^*Y respectively. If \mathcal{M} is given by

(1.2)
$$\{(x, y); \Phi(x, y) = 0\},\$$

then (1.1) means that both Φ'_x and Φ'_y do not vanish on \mathcal{M} . In particular, for $(x, y) \in \mathcal{M}$ the varieties

$$\begin{split} \mathcal{M}_{x} &= \left\{ y \in Y; \left(x, \, y \right) \in \mathcal{M} \right\}, \\ \mathcal{M}^{y} &= \left\{ x \in X; \left(x, \, y \right) \in \mathcal{M} \right\}, \end{split}$$

are smooth immersed curves in Y and X, respectively. Let $\chi \in C^{\infty}(X \times Y)$ be compactly supported in $X \times Y$. We consider averaging operators of the form

(1.3)
$$\mathscr{R}f(x) = \int_{\mathscr{M}_x} \chi(x, y) f(y) \, d\sigma_x(y)$$

where $d\sigma_x$ is a smooth density on \mathcal{M}_x depending smoothly on x.

We shall examine the $L^p \to L^q$ and $L^p \to L^q_{\alpha}$ mapping properties of \mathscr{R} . (Here L^p_{α} denotes the standard L^p -Sobolev space.) The operators \mathscr{R} are Fourier integral operators and belong to the class $I^{-1/2}(X, Y, \Lambda)$ (see [9]), and those mapping properties are well understood if Λ is locally the graph of a canonical transformation. The latter condition means that the projections $\pi_R: \Lambda \to T^*Y$ and $\pi_L: \Lambda \to T^*X$ are locally diffeomorphisms. Another way of expressing this is to say that the Monge-Ampere determinant

(1.4)
$$\mathscr{I}(x, y) = \det\begin{pmatrix} \Phi''_{xy} & \Phi'_{x} \\ {}^{t}\Phi'_{y} & 0 \end{pmatrix}$$

Received 17 September 1992.

Research supported in part by a grant from the National Science Foundation, USA.