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Introduction, statement of the result, and notation. Let f2 be a bounded convex
open subset of IRn, such that the boundary has W2’ regularity, i.e., the unit normal
vector field has Lipschitz regularity. Recall that the billiard in f is the dynamical
system on the unit (co)tangent bundle on f generated by the motion of a point
in f along a geodesic with unit speed, with elastic reflections on the boundary--
which amounts to identifying, above df, the symmetric vectors with respect to the
tangent space to df. To be precise, the latter definition determines the trajectory
of only almost every tangent vector, for the Liouville measure 2--namely, vectors
not tangent to df and such that the series of successive time intervals between two
reflections does not converge (see for instance [KS], [Ha]). Anyway, this yields a
(almost-everywhere-defined) one-parameter group (G) of measurable transforma-
tions leaving invariant the Liouville measure 2. The ergodicity of such a dynamical
system was studied by several authors, particularly Bunimovitch i-B-I, who gave first
examples of ergodic convex billiards. The most famous example is the "stadium" in
IR2, or in IR3 the region which appears under rotation of the stadium around its
diameter.
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