DENSITY THEOREMS FOR CONGRUENCE GROUPS IN REAL RANK 1

JONATHAN HUNTLEY AND YONATAN R. KATZNELSON

1. Introduction. Let G be a semisimple Lie group of noncompact type defined over \mathbb{Q} , and $\Gamma \subset G$ an arithmetic lattice in G. By "arithmetic" we understand that there is a rational embedding $\tau: G \hookrightarrow GL_n(\mathbb{R})$ such that $\tau(\Gamma)$ is commensurable with $G(\mathbb{Z}) = \tau(G) \cap GL_n(\mathbb{Z})$. From this embedding we further obtain *congruence* subgroups $\Gamma(q) \subset \Gamma$ by setting

$$\Delta(q) = \{ \gamma \in G(\mathbf{Z}) : \gamma \equiv I \pmod{q} \}$$

and

$$\Gamma(q) = \tau^{-1}(\tau(\Gamma) \cap \Delta(q)).$$

In what follows we will identify G with $\tau(G)$, Γ with $\tau(\Gamma)$, and $\Gamma(q)$ with $\tau(\Gamma) \cap \Delta(q)$ unless it leads to ambiguity. With this in mind for $g \in G$ set

$$||g||^2 = \operatorname{Tr}({}^t g g),$$

and for dg Haar measure on G let

$$\alpha = \lim_{T \to \infty} \left(\frac{\log \int_{\|g\| \leq T} dg}{\log T} \right).$$

For any lattice $\Delta \subset G$ define the lattice point counting function $N(T, \Delta)$ by

$$N(T, \Delta) = \#\{\delta \in \Delta : \|\delta\| \leq T\}.$$

Duke, Rudnick, and Sarnak [5] show that $N(T, \Gamma) \sim cT^{\alpha}$ as $T \to \infty$, and more pertinently for our discussion, that

$$N(T, \Gamma(q)) \sim \frac{cT^{\alpha}}{\iota(q)}$$
 as $T \to \infty$, (1)

where $\iota(q)$ is the index $[\Gamma : \Gamma(q)]$.

Received 13 November 1992.

Huntley supported in part by NSF grant DMS 9203393 and several Psc-Cuny Research Grants. Huntley's and Katznelson's research at MSRI supported in part by NSF grant DMS 8505550.