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FLUXES, LAPLACIANS, AND KASTELEYN’S THEOREM

ELLIOTT H. LIEB AND MICHAEL LOSS

1. Introduction. The genesis of this paper was an attempt to understand a
problem in condensed matter physics related to questions about electron correla-
tions, superconductivity, and electron-magnetic field interactions. The basic idea,
which was proposed a few years ago, is that a magnetic field can lower the energy
of electrons when the electron density is not small. Certain very specific and very
interesting mathematical conjectures about eigenvalues ofthe Laplacian were made,
and the present paper contains a proof of some of them. Furthermore, those
conjectures lead to additional natural conjectures about determinants of Laplacians
which we both present and prove here. It is not clear whether these determinantal
theorems have physical applications but they might, conceivably in the context of
quantum field theory. Some, but not all, of the results given here were announced
earlier in [LE].
The setting is quantum mechanics on a graph or lattice. (All our terminology will

be precisely defined in the sequel.) Physically, the vertices of our graph A can be
thought of either as a discretization of space (i.e., replace the Laplacian by a finite
difference operator), or they can be seen as locations of atoms in a solid. There are
IAI vertices. In the atomic interpretation the edges become electron bonds joining
the atoms, and the model is known as the tight-binding model or Hiickel model.
The natural Laplacian L,e associated with A is a Iml Iml matrix indexed by the
vertices of A and whose diagonal elements satisfy -Zaxx number of attached
edges (or valency) of vertex x. The other elements are x if x and y are
connected by an edge, and zero otherwise.

For us it is more convenient to consider the matrix which is the Laplacian
without the diagonal term, i.e., x is replaced by zero. In the context of graph
theory e is also known as the adjacency matrix. There are three excuses for
this: (i) in the solid state context, is the natural object because atoms do
not bond to themselves; (ii) most of the graphs that are considered in the physics
literature have constant valency, and so and &o have the same spectrum
modulo a constant which is equal to this valency; (iii) mathematically, seems to
be the more natural object--from our point of view, at least--because its spectrum
on a bipartite graph is always a union of pairs 2 and - (when -0), as
explained in Section 2. The spectrum of ’ generally does not have any such
symmetry.
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