ADDENDUM TO "A PERTURBATION RESULT IN PRESCRIBING SCALAR CURVATURE ON S""

SUN-YUNG ALICE CHANG AND PAUL C. YANG

We have recently been informed by Yanyan Li that there is some ambiguity in the notion of nondegeneracy introduced in our article [CY]. The purpose of this note is to clarify the ambiguity. The argument of [CY] actually establishes the following:

THEOREM. There exists constants $\varepsilon(n)$ such that, if K or R is a smooth function satisfying:

- (i) $||K-1||_{\infty} \leq \varepsilon(2)$ or $||R-R_0||_{\infty} \leq \varepsilon(n)$;
- (ii) K or R is a uniformly nondegenerate function of order α , where $\alpha \leq n$ when n is even and $\alpha \leq n 1$ when n is odd; i.e.,

(*)
$$|G(P, t)| \ge \begin{cases} \frac{C}{t^{\alpha}}, & \text{when } \alpha < n, \\\\ \frac{C}{t^{n} \log t}, & \text{if } \alpha = n \end{cases}$$

for $t \ge t_0$, uniformly in P, for all P in Sⁿ. (iii) deg($G|_{t=t_0}, 0$) $\ne 0$;

then the equation (0.1) has a solution.

In the original statement in [CY] of the theorem, we did not mention the uniformity requirement in the decay of the map G(P, t) as t tends to infinity; we have only imposed (*) condition at the initial points of K (or R).

We make two remarks concerning this uniformity assumption. The first is that in the case $\alpha = 2$, uniformity in (*) is a consequence of the nondegenerate assumption on the critical points of the function K or R. The theorem in the case $\alpha = 2$ was used as the starting point in a continuity argument for our more general existence result in [CGY]. The second remark is that, in the general case, the uniformity requirement does not follow from the nondegenerate requirement on the critical points of K or R alone. In principle, it is possible to reduce this requirement to algebraic criteria on the Taylor coefficients of the function R at its critical points. For example, we determine below necessary and sufficient conditions on the Taylor coefficients of R at its critical points when $\alpha = 3$.

Received 21 April 1993.