DISTRIBUTION OF THE ERROR TERM IN THE WEYL ASYMPTOTICS FOR THE LAPLACE OPERATOR ON A TWO-DIMENSIONAL TORUS AND RELATED LATTICE PROBLEMS

PAVEL M. BLEHER

1. Introduction. Let E_n be the eigenvalues of the Laplace-Beltrami operator on a d-dimensional compact smooth closed Riemannian manifold M, $-\Delta \varphi_n = E_n \varphi_n$ and let $N(E) = \# \{E_n \leq E\}$ be the spectral function of this operator. The Weyl formula gives the asymptotics of N(E), when $E \to \infty$:

$$N(E) = \frac{\text{Vol } M \cdot \text{Vol } \Omega_d}{(2\pi)^d} E^{d/2} (1 + o(1)), \qquad (1.1)$$

where $\Omega_d = \{x \in \mathbb{R}^d, |x| \leq 1\}$. A classical problem is: What is the asymptotic behavior of the error term in the Weyl formula

$$D(E) = N(E) - \frac{\operatorname{Vol} M \cdot \operatorname{Vol} \Omega_d}{(2\pi)^d} E^{d/2}, \qquad (1.2)$$

when $E \rightarrow \infty$?

In the present work we study this problem in a simple case, when M is a two-dimensional torus $\mathbf{T}^2(2\pi a_1, 2\pi a_2) = \mathbf{R}^2/(2\pi a_1 \mathbf{Z} \oplus 2\pi a_2 \mathbf{Z})$. In this case, $-\Delta$ is a Laplace operator with periodic boundary conditions, in a rectangle with the sides $2\pi a_1$, $2\pi a_2$. The eigenfunctions of $-\Delta$ are

$$\varphi_n(x) = \exp(i(n_1 x_1/a_1 + n_2 x_2/a_2)),$$

where $n = (n_1, n_2) \in \mathbb{Z}^2$, and the eigenvalues are

$$E_n = n_1^2/a_1^2 + n_2^2/a_2^2;$$

hence

$$N(E) = \#\{n|n_1^2/a_1^2 + n_2^2/a_2^2 \leq E\}.$$

So we come to the classical lattice problem: What is the asymptotic behavior, when $E \to \infty$, of the difference N(E) - S(E), between the number of lattice points inside

Received 10 August 1992.