AN INVERSE BOUNDARY VALUE PROBLEM IN ELECTRODYNAMICS

PETRI OLA, LASSI PÄIVÄRINTA, AND ERKKI SOMERSALO

1. Introduction and statement of results. Consider the following inverse boundary value problem of electrodynamics: Let Ω be a bounded body in \mathbb{R}^{3} whose electric permittivity, conductivity, and magnetic permeability are described by the functions ε, σ, and μ, respectively. The objective is to reconstruct these parameters in a noninvasive way from electromagnetic field measurements on the surface of the body. To be more specific, let E and H denote any electric and magnetic fields inside the body with a harmonic time dependence. Thus, E and H satisfy Maxwell's equations

$$
\begin{equation*}
\nabla \wedge E=i \omega \mu H, \quad \nabla \wedge H=-i \omega\left(\varepsilon+i \frac{\sigma}{\omega}\right) E \quad \text { in } \Omega \tag{1.1}
\end{equation*}
$$

with $\omega>0$ fixed. Let n be the exterior unit normal on the boundary Γ of Ω. By Λ we denote the linear mapping that assigns the tangential component of $\left.E\right|_{\Gamma}$ to that of $\left.H\right|_{\Gamma}$, i.e.,

$$
\Lambda(n \wedge E)=n \wedge H
$$

The question that is addressed in the present article is: Can one recover uniquely the functions ε, σ, and μ from the knowledge of the mapping Λ ?
The roots of this problem are in the inverse boundary value problem of electrostatics. In his article [C], Calderón asked if the conductivity of the body is uniquely determined by the voltage-to-current (or Dirichlet-to-Neumann) map on the surface of the body. This problem obtained considerable attention by a number of authors, and the problem of uniqueness was solved affirmatively in space dimensions greater than two (see [HN], [KV], [I], [N], [R], and [SU]) and relatively generally also in two space dimensions ([SuU1]). One of the crucial tools in tackling this problem turned out to be related to an old method due L. D. Faddeev who, in a different connection, constructed free-space fundamental solutions with an exponential growth in certain directions. (See also [Ne] for a detailed discussion of this fundamental solution.) An application of Green's formula with this fundamental solution transforms the problem into an asymptotically linear one (see [SU] for details). A further step was taken in the article of Nachman [N], where it was

[^0]
[^0]: Received 10 February 1992. Revision received 3 August 1992.
 This research was supported in part by the Academy of Finland.

