GEOMETRIC CONSTRUCTION OF POLYLOGARITHMS

MASAKI HANAMURA AND ROBERT MACPHERSON

0. Introduction. There is currently a renaissance of research on polylogarithm functions. One branch of this activity is the effort to construct a Grassmannian *p*-logarithm, whose existence was conjectured in [BMS] and [HR-M]. A Grassmannian *p*-cocycle is a collection of analytic differential forms of various degrees on various Grassmannian manifolds which satisfies a certain cocycle condition. (The precise definition is given in §6.) A Grassmannian *p*-logarithm itself is one of the forms in such a collection—it is a 0-form, or a function. For an explanation of the importance of Grassmannian *p*-logarithms, see [BMS], [HR-M], [L, Chap. 15], [G], and [Y].

In this paper, we introduce a method of constructing analytic differential forms on algebraic varieties. We call this method *generating the forms by* \mathcal{P} -figures. We also develop a calculus for proving identities among differential forms generated this way, by reducing them to geometric relations among the \mathcal{P} -figures. Differential forms whose formulas in local coordinates are too difficult to write explicitly down can sometimes be easily constructed and manipulated with \mathcal{P} -figures.

We illustrate this method by using it to construct Grassmannian *p*-cocycles for p equal to 2 or 3, and prove the identities involved in the cocycle condition. A future paper is planned to consider the case where p is 4 or more. There are other constructions of Grassmannian polylogarithms [GM], [HR-M], [G]. However, the construction given here has some advantages. In addition to its direct use of geometry via \mathcal{P} -figures, it gives a direct connection to mixed Tate motives in the language of [BGSV] and [BMS].

 \mathscr{P} -figures and the differential forms they generate. We will always denote by \mathscr{P} a real Euclidean polyhedron. Fix a complex projective space \mathbb{P}^n . A \mathscr{P} -figure is an assignment of a linear subspace M(F) of \mathbb{P}^n to each face F of \mathscr{P} (including \mathscr{P} itself) such that

- (i) if F is a face of \mathcal{P} , the complex dimension of the subspace M(F) is the (real) dimension of F, and
- (ii) if $F \subset F'$, then $M(F) \subset M(F')$.

For example, suppose that \mathscr{P} is a square with corners v_0, v_1, v_2, v_3 . Then the configuration M must be a quadrilateral of complex lines lying in a complex plane; it consists of four points $M(v_i)$, four lines $M([v_0, v_1]), M([v_1, v_2]), M([v_2, v_3]), M([v_3, v_0])$, and a plane $M(\mathscr{P})$ in \mathbb{P}^3 that are subject to the required inclusions. See Figure 0.1.

Received 27 July 1992.

Both authors partially supported by the NSF.