GLOBAL CRYSTAL BASES OF QUANTUM GROUPS

MASAKI KASHIWARA

0. Introduction.

0.1. In $[K_2]$, we constructed the global crystal bases of $U_q^{-}(g)$ and of the irreducible $U_q(g)$ -modules with highest weight. The purpose of this article is to construct the global crystal basis of the q-analogue $A_q(g)$ of the coordinate ring of the reductive algebraic group associated with the Lie algebra g. The idea of construction is similar to $[K_2]$. By the q-analogue of the Peter-Weyl theorem, $A_q(g)$ has a decomposition $\bigoplus_{\lambda} V(\lambda)^* \otimes V(\lambda)$ as a bi- $U_q(g)$ -module, where $V(\lambda)$ is the irreducible $U_q(g)$ -module with a dominant integral weight λ as highest weight. Hence $A_q(g)$ has a (upper) crystal base $(L(A_q(g)), B(A_q(g))) = \bigoplus (L(\lambda)^*, B(\lambda)^*) \otimes (L(\lambda), B(\lambda))$ at q = 0 and similarly a crystal base $(\bar{L}(A_q(g)), \bar{B}(A_q(g)))$ at $q = \infty$ (see §7 for their normalization). We denote by $U_q^Q(g)$ the sub- $Q[q, q^{-1}]$ -algebra of $U_q(g)$ generated by $e_i^{(n)}, f_i^{(n)}, q^h$, and $\begin{cases} q^h \\ n \end{cases}$. We denote by $\langle , \rangle : A_q(g) \times U_q(g) \to Q(q)$ the canonical pairing, and we define

$$A_q^{\mathbf{Q}}(g) = \left\{ u \in A_q(g); \langle u, U_q^{\mathbf{Q}}(g) \rangle \subset \mathbf{Q}[q, q^{-1}] \right\}.$$

Then $A_q^{\mathbf{Q}}(g)$ is a subalgebra of $A_q(g)$ satisfying $A_q(g) = \mathbf{Q}(q) \otimes_{\mathbf{Q}[q,q^{-1}]} A_q^{\mathbf{Q}}(g)$. Now the main result of this article is the following.

THEOREM 1. (i) Set $E = A_q^{\mathbf{Q}}(\mathfrak{g}) \cap L(A_q(\mathfrak{g})) \cap \overline{L}(A_q(\mathfrak{g}))$. Then $E \to L(A_q(\mathfrak{g}))/qL(A_q(\mathfrak{g}))$ is an isomorphism, and $A_q^{\mathbf{Q}}(\mathfrak{g}) = \mathbf{Q}[q, q^{-1}] \otimes_{\mathbf{Q}} E$.

(ii) Letting G be the inverse of the isomorphism above, we have

$$A_q^{\mathbf{Q}}(\mathfrak{g}) = \bigoplus_{b \in B(A_q(\mathfrak{g}))} \mathbf{Q}[q, q^{-1}]G(b).$$

0.2. Theorem 1 is a consequence of the following theorem, Theorem 2.

Let *M* be an integrable $U_q(g)$ -module with highest weights and M_Q a sub- $U_q^Q(g)$ module of *M* such that $Q(q) \otimes_{\mathbb{Q}[q,q^{-1}]} M_Q \cong M$. Let (L_0, B_0) and (L_{∞}, B_{∞}) be an
upper crystal base of *M* at q = 0 and $q = \infty$, respectively. Let $H = \{u \in M; e_i u = 0$ for any $i\}$ be the set of highest-weight vectors.

THEOREM 2. Assume the following conditions: (i) $\{u \in M; e_i^{(n)}u \in M_0 \text{ for any } i \text{ and } n \ge 1\} = M_0 + H;$

(ii) $H \cap M_{\mathbf{Q}} \cap L_0 \cap L_{\infty} \to (H \cap L_0)/(H \cap qL_0)$ is an isomorphism.

Received 24 March 1992. Revision received 31 August 1992.