Vol. 69, No. 2

VARIATIONS OF THE MIXED HODGE STRUCTURE OF AFFINE HYPERSURFACES IN ALGEBRAIC TORI

VICTOR V. BATYREV

CONTENTS

1.	Introduction	349
2.	Ehrhart polynomials and toric varieties	354
3.	Hodge-Deligne numbers of hypersurfaces in T	357
4.	Geometric and homological characterizations of Δ -regularity	361
5.	Poincaré residue mappings	367
6.	Logarithmic de Rham cohomology	370
7.	Global de Rham complexes: Dwork-Katz method	375
8.	The mixed Hodge structure	380
9.	Hodge structures of weight $n-1$	384
10.	Moduli spaces of affine hypersurfaces	387
11.	Variations of Hodge structures	388
12.	Calabi-Yau hypersurfaces in toric varieties	391
13.	Moduli spaces of Calabi-Yau hypersurfaces	398
14.	Periods and generalized hypergeometric functions	401

1. Introduction. The study of infinitesimal variations of Hodge structure on cohomology of algebraic varieties developed by J. Carlson, M. Green, P. Griffiths, and J. Harris has been originated from the fundamental paper of Griffiths on periods of complex hypersurfaces in projective spaces [31]. The paper of Griffiths contains a very fruitful approach to a description of the Hodge structure on the primitive part PH^{n-1} of the middle cohomology group of projective hypersurfaces $\overline{Z}_f \subset \mathbf{P}^n$ defined by homogeneous polynomials $f(Y) \in \mathbb{C}[Y_0, Y_1, \ldots, Y_n]$. Griffiths has proved the existence of an isomorphism between the quotients of the Hodge filtration on $PH^{n-1}(\overline{Z}_f)$ and the homogeneous components of an Artinian graded ring R_f . The ring R_f is called a Jacobian ring. It is a quotient of the polynomial ring $\mathbb{C}[Y_0, Y_1, \ldots, Y_n]$ by the Jacobian ideal J_f generated by a regular sequence consisting of partial derivatives $\partial f(Y)/\partial Y_i$, $(0 \le i \le n)$.

One should remark that a similar idea was also discovered earlier by Dwork in his *p*-adic proof of the Weil's conjectures for hypersurfaces in projective spaces [20, 21]. Instead of projective hypersurfaces, Dwork has considered only affine parts Z_f

Received 28 August 1992.

Supported by DFG, Forschungsschwerpunkt Komplexe Mannigfaltigkeiten.