ON THE STANDARD L-FUNCTION FOR $\boldsymbol{G}_{\mathbf{2}}$

DAVID GINZBURG

Let $G=G_{2}$. The group ${ }^{L} G^{0}=G_{2}(\mathbb{C})$ has a seven-dimensional irreducible representation which we refer to as the standard representation of G_{2}. Let π be an irreducible generic cusp form on $G(\mathbb{A})$. According to the Langlands program we may associate to π and to the standard representation of G_{2} an L-function which we call the standard L-function (see Section 3).

In [15] a Rankin-Selberg integral representation is constructed for this L function. This integral involves an Eisenstein series on SO_{7} induced from a nonmaximal parabolic.

In this paper we construct another Rankin-Selberg integral which represents the standard L-function of G_{2}. This construction involves an Eisenstein series on the double cover of $S L_{2}$. Since the poles of this Eisenstein series are well known (see [1]), this enables us to show that the partial standard L-function can have at most one simple pole. Finally, we show that the existence of this pole implies a nonvanishing property of a certain period (see Section 5).
I wish to thank S. Rallis for useful conversations, and D. Soudry for explaining to me parts of the local theory.

1. Notations

(1.1) Let $G=G_{2}$. G has two simple roots, α the short root and β the long root. Its positive roots are denoted by $\alpha, \beta, \alpha+\beta, 2 \alpha+\beta, 3 \alpha+\beta, 3 \alpha+2 \beta$. The long roots $\beta, 3 \alpha+\beta, 3 \alpha+2 \beta$ form the root system of $S L_{3}$. If ε is a root, $x_{\varepsilon}(r)$ will denote the one parametric subgroup corresponding to ε.

Let $P=G L_{2} U$ (resp. $Q=G L_{2} V$) be the maximal parabolic subgroup of G such that $x_{\alpha}(r) \subset G L_{2}\left(\right.$ resp. $\left.x_{\beta}(r) \subset G L_{2}\right)$. Thus $\operatorname{dim} U=\operatorname{dim} V=5$. We shall denote by R the maximal unipotent radical of G. The maximal split torus of G is denoted by $h\left(t_{1}, t_{2}\right)$ and parametrized such that

$$
\begin{aligned}
& h^{-1}\left(t_{1}, t_{2}\right) x_{\alpha}(r) h\left(t_{1}, t_{2}\right)=x_{\alpha}\left(t_{2}^{-1} r\right) \\
& h^{-1}\left(t_{1}, t_{2}\right) x_{\beta}(r) h\left(t_{1}, t_{2}\right)=x_{\beta}\left(t_{1}^{-1} t_{2} r\right) .
\end{aligned}
$$

Under this embedding of $S L_{3}$ in $G, h\left(t_{1}, t_{2}\right)$ is identified with $\operatorname{diag}\left(t_{1}, t_{2}, t_{1}^{-1} t_{2}^{-1}\right)$. The two simple reflections of the Weyl group of G, corresponding to α and β, are denoted by w_{α} and w_{β}.

