ON THE EXISTENCE OF POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS—A PROBABILISTIC POTENTIAL THEORY APPROACH

Z. ZHAO

1. Introduction. In this paper we shall study the existence of solutions to the problem

$$\int \Delta u + K(x)f(u) = 0 \qquad \text{in } D \tag{1}$$

(I)

$$u > 0$$
 in D (2)

where D is an unbounded domain in R^d ($d \ge 3$). Our goal is to prove an existence theorem for problem (I) in a general setting by using Brownian path integration method and the potential theory. The following is the main result.

THEOREM 1. Let D be an unbounded domain in \mathbb{R}^d ($d \ge 3$) with a compact Lipschitz boundary. Suppose that f(w) is a continuous function in (0, b) for some $0 < b \le \infty$ satisfying

(II)
$$\lim_{w\to 0^+}\frac{f(w)}{w}=0,$$

and K(x) is a Green-tight function in D; namely, K(x) is a Borel measurable function in D satisfying that

(III) the family
$$\left\{\frac{K(\cdot)}{|\cdot - \xi|^{d-2}}\right\}$$
 is uniformly integrable

over D with the parameter $\xi \in D$. Then problem (I) has infinitely many bounded solutions. More precisely, there exists $0 < b_0 < b$, such that for each $c \in (0, b_0]$ there exists a solution u of (I) satisfying

(4)
$$\lim_{|x|\to\infty} u(x) = c.$$

Remark 1. Note that there is no restriction on the sign of K and f and that there are no assumptions on the continuity and boundedness for K.

Received 19 May 1992. Revision received 25 August 1992.