A STABILITY CRITERION FOR BIORTHOGONAL WAVELET BASES AND THEIR RELATED SUBBAND CODING SCHEME

ALBERT COHEN AND INGRID DAUBECHIES

Introduction. In a recent work with J. C. Feauveau [CDF], we introduced biorthogonal bases of compactly supported wavelets, i.e., pairs of dual Riesz bases generated from two single compactly supported functions ψ and $\tilde{\psi}$ by means of dilations and translations

$$\begin{cases} \psi_k^j(x) = 2^{-j/2} \psi(2^{-j}x - k) & (j,k) \in \mathbb{Z}^2 \\ \tilde{\psi}_k^j(x) = 2^{-j/2} \tilde{\psi}(2^{-j}x - k) & (j,k) \in \mathbb{Z}^2. \end{cases}$$
(1.1)

This construction mimics, in a more general setting, the construction of orthonormal bases of compactly supported wavelets developed in [Dau1] that we briefly recall here in three steps:

• Orthonormal wavelets are associated with a scaling function φ which defines a multiresolution analysis, i.e., a ladder of embedded approximation subspaces of $L^2(\mathbb{R})$

$$\{0\} \to \cdots V_1 \subset V_0 \subset V_{-1} \cdots \to L^2(\mathbb{R}) \tag{1.2}$$

such that $\{\varphi_k^j\}_{k \in \mathbb{Z}} = \{2^{-j/2}\varphi(2^{-j}x-k)\}_{k \in \mathbb{Z}}$ is an orthonormal basis for V_j . The wavelets are built to characterize the missing details between two adjacent levels of approximation. More precisely, $\{\psi_k^j\}_{k \in \mathbb{Z}} = \{2^{-j/2}\psi(2^{-j}x-k)\}_{k \in \mathbb{Z}}$ is an orthonormal basis for the orthogonal complement W_i of V_i in V_{i-1} .

• The constructions of φ and ψ are based on a trigonometric polynomial $m_0(\omega)$ such that $m_0(0) = 1$ and

$$|m_0(\omega)|^2 + |m_0(\omega + \pi)|^2 = 1.$$
(1.3)

The functions φ and ψ are then defined by

$$\hat{\varphi}(\omega) = \prod_{k=1}^{+\infty} m_0 (2^{-k} \omega) \tag{1.4}$$

and

$$\hat{\psi}(\omega) = m_1\left(\frac{\omega}{2}\right)\phi\left(\frac{\omega}{2}\right) = e^{-i\omega/2} m_0\left(\frac{\omega}{2} + \pi\right)\phi\left(\frac{\omega}{2}\right). \tag{1.5}$$

Received 18 May 1992.