COMPLEX TANGENTS OF REAL SURFACES IN COMPLEX SURFACES

FRANC FORSTNERIČ

Introduction. In this paper we study the complex tangents of real surfaces in complex surfaces. More precisely, let M be a closed real surface, i.e., a smooth, compact, two-dimensional manifold without boundary. Given an immersion resp. embedding $\pi: M \to \mathcal{M}$ of M into a complex surface \mathcal{M} (a complex manifold of dimension two), we consider the question to what extent can one simplify the structure of the set of complex tangents of π by a regular homotopy (resp. isotopy) of immersions (resp. embeddings).

Recall that a point $p \in M$ is called a *complex tangent* of π if the tangent space $\pi_*(T_pM)$ is a complex linear subspace (a complex line) in $T_{\pi(p)}M$. The immersion is totally real at every point that is not a complex tangent. An immersion without complex tangents is said to be totally real. When M is orientable and we choose an orientation on M, then every complex tangent p of π is either positive or negative, depending on whether the orientation on $\pi_*(T_pM)$ induced from T_pM by π_* agrees or disagrees with the canonical orientation of $\pi_{\star}(T_n M)$ as a complex line.

Recall that a regular homotopy is a family of immersions $\pi_t: M \to \mathcal{M}, t \in [0, 1]$, such that π_t and all its derivatives depend continuously on the parameter t. Immersions π_0 and π_1 are regularly homotopic if there exists a regular homotopy connecting π_0 to π_1 . If all immersions in the family π_t are embeddings, we call π_t an isotopy of embeddings.

Thom's transversality theorem (see [1] or [2]) implies that a generic immersion $\pi: M \to \mathcal{M}$ only has isolated complex tangents, and its double points are transverse self-intersections (normal crossings) that avoid the complex tangents of π . In this paper we shall only study immersions satisfying these properties, and we will not mention this again.

It is well known that one cannot change the complex tangents arbitrarily by a regular homotopy since their number, counted with suitable algebraic multiplicities, is an invariant $I(\pi)$ of the regular homotopy class of the immersion, called the *index* of π (Chern and Spanier [10], Eliashberg and Harlamov [24], Webster [33], and Forstnerič [16]). Before proceeding, we must recall the definition of $I(\pi)$.

First, we recall from [16] and [33] the index $I(p; \pi) \in \mathbb{Z}$ of an isolated complex tangent of π . Let U be a small disc neighborhood of p in M. In suitable local holomorphic coordinates (z, w) on \mathcal{M} near $\pi(p)$, the surface $\pi(U)$ is a graph w = f(z)of a smooth complex function f defined near the origin in C, with $\pi(p)$ corresponding

Author supported by the Research Council of the Republic of Slovenia. Received 1 March 1991. Revision received 14 November 1991.