RIEMANNIAN MANIFOLDS WITH SMALL INTEGRAL NORM OF CURVATURE

DEANE YANG

J. Cheeger and M. Gromov [4] proved that, if a manifold has a Riemannian metric such that the injectivity radius is sufficiently small everywhere relative to the sectional curvature, then the manifold admits an F-structure of positive rank and collapses with bounded curvature. (See [5, 4] for the definition and examples.) More recently, in joint work with K. Fukaya, they have refined the notion of F-structures into what they call N -structures. Gromov has asked if a compact n-dimensional Riemannian manifold with sufficiently small $L^{n / 2}$ norm of curvature must admit an F-structure of positive rank.

Gromov's question is an important one. Cheeger, Gromov, and others have extensively studied how pointwise bounds on curvature control the geometry and topology of a Riemannian manifold. Given a sequence of metrics with uniform pointwise bounds on curvature, the Cheeger-Gromov(-Greene-Wu-Peters) convergence theorems [3, $8,10,11,12]$ show that, when the injectivity radius is bounded from below, there is a convergent subsequence. On the other hand, the CheegerGromov collapsing manifold theorem [5, 4] describes the topology of a manifold that admits a metric with bounded sectional curvature and sufficiently small injectivity radius everywhere. Analogous results using integral bounds on curvature would open up a whole new range of possibilities for using analysis to study the topology of a manifold.
Two metrics are C^{0} close if the distance between them is less than 1 with respect to the C^{0} topology.

The purpose of this paper is to prove the following result.
Theorem 0.1. Given $3 \leqslant n<q$ and $c>0$, there exist constants $\delta(n, c), \kappa(n, q, c)>$ 0 , and $C(n, q, c)>0$ such that the following holds.

Given $0<\varepsilon<\kappa(n, q, c)^{2}$ and a smooth n-dimensional manifold M with a complete Riemannian metric g satisfying

$$
\|\rho(\delta, \cdot)\|_{\infty}^{q-n} \int_{M}|\mathrm{Rc}|^{q / 2} d V \leqslant \kappa(n, q, c)^{q}
$$

where ρ is the weak injectivity radius (see §1 for the definition) and

$$
\int_{M}|\mathrm{Rm}|^{n / 2} d V \leqslant \varepsilon^{n / 2},
$$

Received 23 August 1991.

