SURFACES OF DEGREE d WITH SECTIONAL GENUS g IN \mathbb{P}^{d+1-g} AND DEFORMATIONS OF CONES

SONNY TENDIAN

0. Introduction. In this paper we first review the relation between the theory of normal surfaces $S_{d} \subset \mathbb{P}^{d+1-g}$ of degree d with a hyperplane section of genus g and the theory of the deformations of cones over curves. Our main result is the complete classification of these surfaces S_{d} with $d \geqslant 4 g-4$. Along the way, we answer some questions about the deformations of cones over curves. In particular, we extend Pinkham's work [Pi1] on deformations of cones over curves of genus 0 and 1, to nonhyperelliptic curves of genus $\geqslant 3$. The deformations of cones over hyperelliptic curves have been studied in [T3].

Let X be a smooth complex projective curve of genus g and $X \subset \mathbb{P}^{N}=\mathbb{P}\left(H^{0}(M)\right)$ be the embedding by a very ample line bundle M of degree d. Consider the natural $\operatorname{map} \theta: \mathbb{C}^{N+1}-\{0\} \rightarrow \mathbb{P}^{N}$. Define the affine cone of X to be $\theta^{-1}(X) \cup\{0\}$ and the projective cone of X to be the projective closure of the affine cone of X in \mathbb{P}^{N+1}. When there is no ambiguity in context, we will denote both the affine and projective cones of X by (X, M). A useful tool for studying the deformations of the affine cone of X when $d \geqslant 4 g-4$ and $M \neq 2 K_{X}$ is the correspondence developed in [Pi1, Thms. 4.2 and 5.1] between the deformations of the affine cone of X and the deformations of the projective cone of X in \mathbb{P}^{d+1-g}. From this point of view it is natural to look at all normal surfaces $S_{d} \subset \mathbb{P}^{d+1-g}$ of degree d with a hyperplane section of genus g. For example, suppose that X is a hyperplane section of the normal surface $S_{d} \subset \mathbb{P}^{d+1-g}$ and M is the normal bundle of X in S_{d}. If S_{d} is arithmetically Cohen-Macaulay, then by [Pi 2, Thm. 6.7] the projective and affine cones (X, M) can be deformed to S_{d} and $S_{d}-X$, respectively, by sweeping out the cone over S_{d} with hyperplane sections passing through X. We call this Pinkham's construction. Note that one can deform the cone (X, M) projectively either by keeping X and M fixed in the deformations (e.g., in Pinkham's construction) or by varying X or M. These are known as deforming the cone strictly negatively or seminegatively, respectively. We will give examples of singularities which smooth seminegatively but not strictly negatively. (See 4.10 and 5.6.)

Let $\varphi: V \rightarrow S_{d} \subset \mathbb{P}^{d+1-g}$ be the minimal resolution of the normal surface S_{d} of degree d with a hyperplane section of genus g. We find that, if $d \geqslant 2 g+1$, then φ is the morphism associated to the complete linear system $|L|$, where $L:=\varphi^{*}\left(\mathcal{O}_{S_{d}}(1)\right)$ and V is a ruled surface. Furthermore, S_{d} cannot be a smooth irregular surface. Using a result of Horowitz [Ho, Cor. 1.8], we then deduce the following theorem.

