HEIGHTS ON THE MODULI SPACE OF RIEMANN SURFACES WITH CIRCLE BOUNDARIES

HALA HALIM KHURI

Introduction. Let $\Sigma = \Sigma_{p,n}$ be a compact surface of genus p with n distinct open disks removed. Let σ be a smooth metric on Σ which extends smoothly to $\partial \Sigma$. Associated with σ is the Laplace-Beltrami operator $\Delta = \Delta_{\sigma}$ with Dirichlet boundary conditions. Let $0 < \lambda_1 < \lambda_2 \leq \lambda_3 \dots$ denote the eigenvalues of Δ . Then det Δ , the determinant of the Laplacian, is formally $\prod \lambda_i$ and is rigorously defined by

$$\det \Delta = \exp(-Z'(0))$$

where Z(s) is the zeta function

$$Z(s)=\sum_{j=1}^{\infty} \lambda_j^{-s}.$$

This series converges absolutely for $\Re(s)$ large, and Z(s) has the integral representation

$$Z(s) = \frac{1}{\Gamma(s)} \int_0^\infty \left(\mathrm{TR}(e^{\Delta t}) \right) t^s \frac{dt}{t} \, .$$

From the small time asymptotics of $(\operatorname{TR}(e^{\Delta t}))$, see [MS], one easily gets the meromorphic continuation of Z(s) to the complex plane, and the zero of $\Gamma(s)^{-1}$ at s = 0ensures that Z(s) is regular at s = 0. One also has $Z(0) = \chi(\Sigma)/6$ in the case $\partial \Sigma \neq \emptyset$, where $\chi(\Sigma)$ denotes the Euler characteristic of Σ .

This definition of det Δ was given by Ray and Singer [RS] for a compact, complex, analytic manifold without boundary, in the context of analytic torsion. More recently, det Δ has played an important role in Polyakov string theory as part of the integrand in a Feynman-type integral over moduli space. The concern there is the set of all surfaces, with varying metrics on those surfaces, and with their associated Laplacians. In this connection Polyakov [P1], [P2] showed how to compute the change in the determinant if the metric is changed conformally and if $\partial \Sigma = \emptyset$. This was later extended to surfaces with boundary by Alvarez [A].

Set $h(\sigma) = -\log(\det \Delta)$. Then for a flat metric σ_0 on Σ and flat $\sigma = e^{2\phi}\sigma_o$, the Polyakov-Alvarez variation formula reads

Received 6 October 1990. Revision received 21 March 1991.