TIME-DEPENDENT APPROACH TO RADIATION CONDITIONS

IRA HERBST AND ERIK SKIBSTED

1. Introduction. We study the momentum of scattering orbits for large time in classical as well as in quantum mechanics. The potential $V(x), x \in \mathbb{R}^n$, is assumed to be smooth and to have the property

$$|\partial_x^{\alpha} V(x)| \leq C_{\alpha} \langle x \rangle^{-\varepsilon_0 - |\alpha|}$$

for any multi-index α . Here $0 < \varepsilon_0 < 1$ and $\langle x \rangle = (1 + |x|^2)^{1/2}$.

As a motivation, we recall that momentum p and position x become parallel. Explicitly, as can easily be proved, on any classical scattering orbit with energy λ ,

$$p = \sqrt{\lambda} \frac{x}{|x|} + O(t^{-\varepsilon_0}) \quad \text{for } t \to +\infty.$$

A "better approximation" is given as follows. Let $S(x, \lambda)$ be a solution to the eikonal equation $|\nabla S(x, \lambda)|^2 + V(x) = \lambda$, which behaves like $\sqrt{\lambda}|x|$ at infinity. Let $\gamma(\lambda) = \lambda$ $p - \nabla S(x, \lambda)$. Then on any orbit

$$\gamma(\lambda) = O(t^{-1}) \quad \text{for } t \to +\infty.$$
 (1.1)

Moreover, we shall prove that

$$\nabla S(x, \lambda)\gamma(\lambda) = O(t^{-2}) \quad \text{for } t \to +\infty.$$
 (1.2)

These results are obtained by means of a simple differential inequality.

A natural quantization of $\nabla S(x, \lambda)$ is the pseudodifferential operator (Ps. D. Op.) $\overline{\nabla S}$ essentially obtained by symmetrizing the Ps. D. Op. with symbol $(\nabla S)(x, \xi^2 +$ V(x)). Let $\overline{\gamma}^{\alpha(m)}$ denote an arbitrary product of m components of the Ps. D. Op. $\overline{\gamma} = p - \overline{\nabla S}$. With this definition we generalize (1.1) and (1.2) to the quantum mechanical case, in fact, with a very similar proof. We establish the analogous estimate

$$\langle x \rangle^{\ell} \overline{\gamma}^{\alpha(m)} e^{-itH} f(H) \langle x \rangle^{-m} = O(t^{-m+\ell+\varepsilon})$$
(1.3)

for $t \to +\infty$ for any $\varepsilon > 0$ and ℓ with $m > \ell \ge 0$. Here $f \in C_0^{\infty}(\mathbb{R}^+)$, and $H = -\Delta + V$.

Received 30 June 1990.

First author's research supported in part by NSF grant DMS 8807816.