LOCAL ZETA FUNCTIONS AND EULER CHARACTERISTICS

J. DENEF

To the memory of Prof. L. Bouckaert

1. Introduction. Let $K \subset \mathbb{C}$ be a number field, \mathfrak{D}_K the ring of algebraic integers of K, and \mathfrak{p} any maximal ideal of \mathfrak{D}_K . We denote the completion of K, resp. \mathfrak{D}_K , with respect to \mathfrak{p} by $K_\mathfrak{p}$, resp. $R_\mathfrak{p}$. Reduction mod \mathfrak{p} will always be denoted by $\bar{}$; thus in particular $\bar{K}_\mathfrak{p}$ is the residue field of $K_\mathfrak{p}$. Let q be the cardinality of $\bar{K}_\mathfrak{p}$; thus $\bar{K}_\mathfrak{p} = F_q$. For $x \in K_\mathfrak{p}$ let ord $x \in \mathbb{Z} \cup \{+\infty\}$ be the \mathfrak{p} valuation of x, $|x| = q^{-\operatorname{ord} x}$, and $\operatorname{ac}(x) = x\pi^{-\operatorname{ord} x}$, where $\pi \in \mathfrak{D}_K$ is a fixed uniformizing parameter for $R_\mathfrak{p}$.

Let ψ be a character of $R_{\mathfrak{p}}^{\times}$, i.e., a homomorphism $\psi: R_{\mathfrak{p}}^{\times} \to \mathbb{C}^{\times}$ with finite image, where $R_{\mathfrak{p}}^{\times}$ denotes the group of units of $R_{\mathfrak{p}}$. We formally put $\psi(0) = 0$. Let $f(x) \in K[x], x = (x_1, \ldots, x_m), f \neq 0$. To these data one associates Igusa's local zeta function

$$Z(K_{\mathfrak{p}}, \psi, s) = \int_{R_{\mathfrak{p}}^{m}} \psi(\operatorname{ac} f(x)) |f(x)|^{s} |dx|$$

where |dx| denotes the Haar measure so normalized that R_p^m has measure one. Let $X = \operatorname{Spec} K[x]$ and $D = \operatorname{Spec} K[x]/(f(x))$. Choose a resolution (Y, h) for f over K, meaning that Y is an integral smooth closed subscheme of projective space over X, $h: Y \to X$ is the natural map, the restriction $h: Y \setminus h^{-1}(D) \to X \setminus D$ is an isomorphism, and $(h^{-1}(D))_{red}$ has only normal crossings as subscheme of Y. Let $E_i, i \in T$, be the irreducible components of $(h^{-1}(D))_{red}$. For each $i \in T$ let N_i be the multiplicity of E_i in the divisor of $f \circ h$ on Y and let $v_i - 1$ be the multiplicity of E_i in the divisor of $h^*(dx_1 \wedge \cdots \wedge dx_m)$. For $i \in T$ and $I \subset T$ we consider the schemes

$$\mathring{E_i} := E_i \backslash \bigcup_{j \neq i} E_j, \qquad E_I := \bigcap_{i \in I} E_i, \qquad \mathring{E_I} := E_I \backslash \bigcup_{j \in T \setminus I} E_j.$$

When $I = \phi$, we put $E_{\phi} = Y$.

For any closed subscheme Z of Y we denote the reduction mod p of Z by Z. As in [D] we say that the resolution (Y, h) for f has good reduction mod p if \overline{Y} and all \overline{E}_i are smooth, $\bigcup_{i \in T} \overline{E}_i$ has only normal crossings, and the schemes \overline{E}_i and \overline{E}_j have no common components whenever $i \neq j$. Let S be a finite subset of Spec \mathfrak{D}_K such that for all $p \notin S$ we have $f \in R_p[x]$, $f \notin 0 \mod p$, and the resolution (Y, h) for f

Received 25 January 1990. Revision received 14 December 1990.