ON CRYSTAL BASES OF THE Q-ANALOGUE OF UNIVERSAL ENVELOPING ALGEBRAS

M. KASHIWARA

To the memory of Professor Michio Kuga who taught me the joy of doing mathematics

CONTENTS

§0. Introduction	 						465
Part I. Crystallization							
\$1. The <i>q</i> -analogue of universal enveloping algebra							467
§2. Crystal base	 						472
§3. Crystal base of $U_a^-(\mathfrak{g})$	 						479
§4. Grand loop	 						488
Part II. Melting the crystal base							
§5. Polarization	 						503
§6. Global crystal bases	 						506
§7. Proof of Theorems 6 and 7	 						509

§0. Introduction. The notion of the q-analogue of universal enveloping algebras is introduced independently by V. G. Drinfeld and M. Jimbo in 1985 in their study of exactly solvable models in the statistical mechanics. This algebra $U_a(g)$ contains a parameter q, and, when q = 1, this coincides with the universal enveloping algebra. In the context of exactly solvable models, the parameter q is that of temperature, and q = 0 corresponds to the absolute temperature zero. For that reason, we can expect that the q-analogue has a simple structure at q = 0. In [K1] we named crystallization the study at q = 0, and we introduced the notion of crystal bases. Roughly speaking, crystal bases are bases of $U_q(g)$ -modules at q = 0 that satisfy certain axioms. There, we proved the existence and the uniqueness of crystal bases of finite-dimensional representations of $U_q(g)$ when g is one of the classical Lie algebras A_n , B_n , C_n and D_n . K. Misra and T. Miwa ([M]) proved the existence of a crystal base of the basic representation of $U_q(A_n^{(1)})$ and gave its combinatorial description.

The aim of this article is to give the proof of the existence and uniqueness theorem of crystal bases for an arbitrary symmetrizable Kac-Moody Lie algebra g. Moreover, we globalize this notion. Namely, with the aid of a crystal base we construct a base named the global crystal base of any highest weight irreducible integrable

Received 27 December 1990.