KILLING HANDLES OF INDEX ONE STABLY, AND π_1^{∞} V. POÉNARU

1. Introduction. The main result of this paper is the following theorem.

THEOREM. Let V^3 be an open, simply-connected 3-manifold. We assume that for some positive integer n the manifold $V^3 \times D^n$, where D^n is the standard smooth n-dimensional ball (with its boundary S^{n-1}), admits a handlebody decomposition having the following two properties.

- (a) With respect to the standard DIFF product structure of $V^3 \times D^n$, this handlebody decomposition is piecewise smooth.
- (b) Our handlebody decomposition is without handles of index one.

Then, for any compact set $K \subset V^3$, there is a compact smooth simply-connected submanifold $U^3 \subset V^3$ such that $K \subset \mathring{U}^3$. In other terms, the existence of a handlebody decomposition without handles of index one for $V^3 \times D^n$ implies that $\pi_1^{\infty}V^3 = 0$.

Since $V^3 \times D^n$ is both noncompact and also with a very large boundary, namely $V^3 \times S^{n-1}$, it is perhaps worthwhile to explain what we mean here by "handlebody decomposition". One way to think of it runs as follows; we give it here in full detail since we will use again the same notations in Section 5 of this paper. We are given an increasing sequence of compact *bounded PL*-manifolds of dimension n + 3

$$(1.1) X_0^{n+3} \subset X_1^{n+3} \subset \cdots$$

such that the following four conditions hold.

(i) $X_0^{n+3} = D_{\text{standard}}^{n+3}$; of course the adjective "standard" used here is relevant only if n+3=4.

(ii) One has

(1.2)
$$X_i^{n+3} = X_{i-1}^{n+3} + \{ a \text{ handle } H_i = D^{\lambda(i)} \times D^{n+3-\lambda(i)} \},\$$

and the index $\lambda(i)$ is always different from one.

(iii) Since we are here in the *PL* context where no smoothing of edges or corners is necessary, the intersection $\partial X_i^{n+3} \cap \partial X_{i+1}^{n+3}$ is always exactly the closure of $\partial X_i^{n+3} - \{$ the attaching zone of the handle $H_{i+1}\}$. This being said, any given X_i^{n+3} is touched only by *finitely* many handles. In looser terms our handlebody decomposition is "proper", or in a more symbolic notation we have $\lim_{n=\infty} H_n = \infty$.

(iv) Clearly, the union $\bigcup_{p=1}^{\infty} X_i^{n+3}$ has a natural structure of a *PL*-manifold with

Received 27 November 1989. Revision received 8 November 1990.