KILLING HANDLES OF INDEX ONE STABLY, AND π_{1}^{∞}

V. POÉNARU

1. Introduction. The main result of this paper is the following theorem.

Theorem. Let V^{3} be an open, simply-connected 3-manifold. We assume that for some positive integer n the manifold $V^{3} \times D^{n}$, where D^{n} is the standard smooth n-dimensional ball (with its boundary S^{n-1}), admits a handlebody decomposition having the following two properties.
(a) With respect to the standard DIFF product structure of $V^{3} \times D^{n}$, this handlebody decomposition is piecewise smooth.
(b) Our handlebody decomposition is without handles of index one.

Then, for any compact set $K \subset V^{3}$, there is a compact smooth simply-connected submanifold $U^{3} \subset V^{3}$ such that $K \subset \dot{U}^{3}$. In other terms, the existence of a handlebody decomposition without handles of index one for $V^{3} \times D^{n}$ implies that $\pi_{1}^{\infty} V^{3}=0$.

Since $V^{3} \times D^{n}$ is both noncompact and also with a very large boundary, namely $V^{3} \times S^{n-1}$, it is perhaps worthwhile to explain what we mean here by "handlebody decomposition". One way to think of it runs as follows; we give it here in full detail since we will use again the same notations in Section 5 of this paper. We are given an increasing sequence of compact bounded PL-manifolds of dimension $n+3$

$$
\begin{equation*}
X_{0}^{n+3} \subset X_{1}^{n+3} \subset \cdots \tag{1.1}
\end{equation*}
$$

such that the following four conditions hold.
(i) $X_{0}^{n+3}=D_{\text {standard }}^{n+3}$; of course the adjective "standard" used here is relevant only if $n+3=4$.
(ii) One has

$$
\begin{equation*}
X_{i}^{n+3}=X_{i-1}^{n+3}+\left\{\text { a handle } H_{i}=D^{\lambda(i)} \times D^{n+3-\lambda(i)}\right\}, \tag{1.2}
\end{equation*}
$$

and the index $\lambda(i)$ is always different from one.
(iii) Since we are here in the PL context where no smoothing of edges or corners is necessary, the intersection $\partial X_{i}^{n+3} \cap \partial X_{i+1}^{n+3}$ is always exactly the closure of $\partial X_{i}^{n+3}-$ \{the attaching zone of the handle H_{i+1} \}. This being said, any given X_{i}^{n+3} is touched only by finitely many handles. In looser terms our handlebody decomposition is "proper", or in a more symbolic notation we have $\lim _{n=\infty} H_{n}=\infty$.
(iv) Clearly, the union $\bigcup_{p=1}^{\infty} X_{i}^{n+3}$ has a natural structure of a $P L$-manifold with

