HIGHER EQUIVARIANT K-THEORY FOR FINITE GROUP ACTIONS

ANGELO VISTOLI

Introduction. Let G be a finite group operating on a compact oriented differentiable manifold M. Consider the equivariant K-theory ring of M, which we denote by $K_{*}(M / / G)$. If G is trivial, then $K_{*}(M) \otimes \mathbb{Q}$ is isomorphic to the cohomology ring $H^{*}(M, \mathbb{Q})$ of M via the Chern character. In general, however, $K_{*}(M / / G) \otimes \mathbb{Q}$ is not isomorphic to the equivariant cohomology ring $H_{G}^{*}(M, \mathbb{Q})$. For example, if M is a point, $K_{0}(M / / G)$ is the ring of representations of G while $H_{G}^{*}(M) \otimes \mathbb{Q}=\mathbb{Q}$. Recently, G. Segal proved the following formula. (See [Hirzebruch-Höfer].) Let \mathscr{R} be a set of representatives for the conjugacy classes of G. For each $s \in G$ let us denote by $C(s)$ the centralizer of s in G. The group $C(s)$ acts on the fixed point set M^{s}. Then there is a canonical isomorphism of graded \mathbb{C}-vector spaces

$$
K_{*}(M / / G) \otimes \mathbb{C} \cong \prod_{s \in \mathscr{R}} H_{C(s)}^{*}\left(M^{s}, \mathbb{C}\right) .
$$

This isomorphism given by Segal is not an isomorphism of rings. However, J. Block and Brylinski independently showed that the rings above are actually naturally isomorphic as \mathbb{C}-algebras. Since $H_{C(s)}^{*}\left(M^{s}, \mathbb{C}\right) \cong H^{*}\left(M^{s}, \mathbb{C}\right)^{C(s)} \cong K_{*}\left(M^{s}\right)^{C(s)} \otimes$ \mathbb{C}, this last result may be stated as the existence of a canonical isomorphism of graded \mathbb{C}-algebras

$$
\begin{equation*}
K_{*}(M / / G) \otimes \mathbb{C} \cong \prod_{s \in \mathscr{R}} K_{*}\left(M^{s}\right)^{C(s)} \otimes \mathbb{C} . \tag{*}
\end{equation*}
$$

The isomorphism above is not defined over \mathbb{Q}; for example, if M is a point, then $K_{0}(M / / G)$ is the ring of representations of G, and $K_{0}(M / / G) \otimes \mathbb{Q}$ will not be a product of copies of \mathbb{Q}, in general.

Now assume that G is a finite group and k is a field of characteristic p (possibly $p=0$). Let n be the least common multiple of the orders of all the elements of G of order prime to p. (This means all the elements if $p=0$.) Suppose that k contains all the n-th roots of 1 and set $\Lambda=\mathbb{Z}[1 /|G|]$. Let X be a separated noetherian regular scheme of finite Krull dimension over k carrying an ample line bundle and assume that G acts on X as a scheme over the field k. The purpose of this paper is to give a formula for $K_{*}(X / / G) \otimes \Lambda$, where

$$
K_{*}(X / / G)=\bigoplus_{i=0}^{\infty} K_{i}(X / / G)
$$

Received 28 June 1990. Revision received 24 December 1990.

