## LOCAL SOLVABILITY IN A CLASS OF OVERDETERMINED SYSTEMS OF LINEAR PDE

## G. A. MENDOZA AND F. TREVES

## **CONTENTS**

Introduction. The present work extends to vector fields with  $\mathscr{C}^{\infty}$  coefficients the main result about vector fields with analytic coefficients in [T3]. Thus we consider n smooth complex vector fields  $L_1, \ldots, L_n$ , in an open neighborhood of the origin, U, in  $\mathbb{R} \times \mathbb{R}^n$ ; they are assumed to be linearly independent over the complex numbers. We shall be concerned with the local solvability of the system of differential equations

(1) 
$$L_j u = f_j, \qquad j = 1, \dots, n.$$

We reason under the hypothesis of local integrability: there is a  $\mathscr{C}^{\infty}$  solution in U of the homogeneous equations

$$(2) L_j Z = 0, j = 1, \ldots, n$$

such that  $dZ \neq 0$  at every point of U. Possibly after contracting U about the origin, we can select the coordinates,  $x, t_1, \ldots, t_n$ , in such a way that  $Z = x + i\varphi(x, t)$  with  $\varphi(0, 0) = 0$ . Furthermore, after a substitution of the vector fields  $L_j$  by linear combinations of them with  $\mathscr{C}^{\infty}$  coefficients, we may assume, and we shall do so from

Received 23 June 1990. Revision received 3 December 1990.

The first author was partially supported by a grant from Fundación Polar while visiting Rutgers University, New Brunswick, New Jersey.

The second author was partially supported by NSF Grant DMS-8903007.