ISOPERIMETRIC BOUND FOR $\lambda_{3} / \lambda_{2}$ FOR THE MEMBRANE PROBLEM

MARK S. ASHBAUGH and RAFAEL D. BENGURIA

1. Introduction. We consider the eigenvalues of the Dirichlet Laplacian on a bounded domain $\Omega \subset \mathbb{R}^{2}$ as defined by the equations

$$
\begin{array}{rlrlr}
-\Delta u & =\lambda u & & \text { on } \Omega & \text { and } \\
u & =0 & & \text { on } \partial \Omega . & \tag{1.1b}
\end{array}
$$

We denote the eigenvalues by $\left\{\lambda_{i}\right\}_{i=1}^{\infty}$, listed in ascending order with multiplicities included so that

$$
\begin{equation*}
0<\lambda_{1}<\lambda_{2} \leqslant \lambda_{3} \leqslant \cdots . \tag{1.2}
\end{equation*}
$$

We associate with these a corresponding sequence of orthonormal eigenfunctions $\left\{u_{i}\right\}_{i=1}^{\infty}$. In this paper we solve the problem of finding the optimal upper bound on the ratio $\lambda_{3} / \lambda_{2}$.

Our result in this paper is a second step toward solving an interesting conjecture of Payne, Pólya, and Weinberger that was made in their seminal paper [7] on eigenvalue ratios some thirty-five years ago. In this paper they conjectured that for the two-dimensional membrane problem, i.e., (1.1), the ratio $\lambda_{m+1} / \lambda_{m}$ of consecutive eigenvalues is maximized over domains Ω and the index m, when $m=1$ and Ω is a disk. They were able to show that, in any event, $\lambda_{m+1} / \lambda_{m} \leqslant 3$. In our recent papers [3, 4] we proved that $\lambda_{2} / \lambda_{1}$ is maximized by its value for a disk, $j_{1,1}^{2} / j_{0,1}^{2} \approx$ 2.5387. There seems to have been no work on $\lambda_{m+1} / \lambda_{m}$ for $m>1$ or even just on $\lambda_{3} / \lambda_{2}$ for the membrane problem between that of Payne, Pólya, and Weinberger and our own in this paper. We refer the reader to our introductions in [3] and [4] for a summary of related work during the intervening years. See also our references to these articles (particularly [4]) which include a nearly complete list of articles stemming from the original papers [6, 7] of Payne, Pólya, and Weinberger. (See also [1] and [10], of which we were unaware when our earlier articles were written.) We shall not repeat these references here, referring the reader instead to [4], but mention again that certain results of Chiti and Talenti concerning spherical rearrangements were instrumental to our proof. The Payne-Pólya-Weinberger result $\lambda_{m+1} / \lambda_{m} \leqslant 3$ was generalized to n dimensions (Dirichlet Laplacian on a bounded

Received 1 November 1990.
Benguria supported in part by FONDECYT (Chile) project number 1238-90.

