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SEMISIMPLICITY OF THE GALOIS REPRESENTATIONS
ATTACHED TO DRINFELD MODULES OVER FIELDS OF

"FINITE CHARACTERISTICS"

YUICHIRO TAGUCHI

0. Introduction. In this and a subsequent paper, we prove the semisimplicity
of the Galois representations attached to Drinfeld modules.

Let K be a finitely generated extension of a finite field of transcendence degree
one. Fix once and for all a place ofK and let A be the ring of elements ofK which
are regular outside . Let F be a field of finite type over A (i.e., a ring homomoro
phism 7: A F is given, and F is finitely generated over the image of 7 as a field).
We say that the characteristic of (F, 7) is or p according as 7 is injective or Ker(7)
is a nonzero prime ideal p of A. In the rest of the paper the terminology "character-
istic" is used only in this sense, and never in the usual sense. We write, by abuse of
notation, char(F) or p accordingly. Let : A Endv(Ga) be a Drinfeld module
over F of rank r ([2]). For any nonzero prime ideal v : char(F) of A, the v-adic
Tare module To() ([1], Chap. 1, (4.11)) is associated with . This is a free Av-module
of rank r, where Av is the v-adic completion of A. The absolute Galois group
n := Gal(FSep/F) of F acts continuously on, T(). Let Kv be the fraction field of Ao.
Our main result is the following

THEOREM (0.1). Assume that char(F) is finite and v v char(F). Then To() (R)av Kv
is a semisimple Ko[n]-module.

It is known that such a statement follows from certain finiteness for isomorphism
classes. ([4]. See also the Appendix.) Let f: ’ be a separable isogeny of Drinfeld
modules over F. If Ker(f) (Fsep) O7=1 (a/ai) as A-modules, where ai are nonzero
ideals of A, we define deg(f) := I-I7=1 ai. Then (0.1) follows from

THEOREM (0.2). Assume that char(F) is finite. Then the number of F-isomorphism
classes of Drinfeld modules ’ over F such that there exists a separable isogeny
over F of degree prime to char(F) is finite.
The idea of the proof of (0.2), using the theory of modular heights, comes from

Zarhin [5].
The plan of the paper is as follows:
1 contains some elementary facts on polynomial functions which are needed

later.
In 2 the differential heights and the modular heights of Drinfeld modules are

defined, and the finiteness theorem (0.2) is reduced to the "bounded height theorem".
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