RELATIVE BIRATIONAL AUTOMORPHISMS OF ALGEBRAIC FIBER SPACES

MASAKI HANAMURA

0. Introductions. Let X be a projective variety over an algebraically closed field of characteristic zero k. One can define the k-scheme $\operatorname{Bir}(X)$ whose k-rational points are in one-to-one correspondence with birational automorphisms of $X,[\mathrm{H} 1, \S 1]$. If X is nonuniruled, the basic structure of its birational automorphism group is given by the following theorem.

Theorem [H2, (2.1)]. For a nonuniruled variety X, there exists a (nonsingular) projective model X^{\prime} whose associated scheme $\operatorname{Bir}\left(X^{\prime}\right)_{\text {red }}$ is a group scheme. The identity component Bir ${ }^{0}\left(X^{\prime}\right)$ is an abelian variety.

If $X^{\prime \prime}$ is another projective model of X such that $\operatorname{Bir}\left(X^{\prime \prime}\right)_{\text {red }}$ is a group scheme, $\operatorname{Bir}\left(X^{\prime}\right)_{\text {red }}$ and $\operatorname{Bir}\left(X^{\prime \prime}\right)_{\text {red }}$ are isomorphic as group schemes, [H2, (2.2)].
The present paper begins further investigation on the birational automorphism group of X. With the above result in mind, it can be divided into two parts: the study of the continuous part, namely the abelian variety $\operatorname{Bir}^{0}\left(X^{\prime}\right)$, and the study of the discrete part, namely the quotient group $\operatorname{Bir}\left(X^{\prime}\right)_{\text {red }} / \operatorname{Bir}^{0}\left(X^{\prime}\right)$.

Let us assume moreover that X has Kodaira dimension $\kappa(X) \geqslant 0$. Let $\phi: X \rightarrow Y$ be its canonical fibration, (2.1). Note that $\kappa(X)=\operatorname{dim} Y$ and that a general fiber of ϕ is of Kodaira dimension zero. We consider the following two conjectures concerning the continuous and the discrete parts of $\operatorname{Bir}\left(X^{\prime}\right)_{\text {red }}$, respectively.

Conjecture (5.3.2) (dimension formula). $\operatorname{dim}_{k} \operatorname{Bir}(X)=q(X)-q(Y)$.
Conjecture (5.3.3) (finitely generatedness). The discrete part $\operatorname{Bir}\left(X^{\prime}\right)_{\text {red }} / \operatorname{Bir}{ }^{0}\left(X^{\prime}\right)$ is finitely generated.

Since ϕ is unique up to birational equivalence, the right side of the formula (5.3.2) is a numerical birational invariant of X. We proved (5.3.2) in [H1, (3.10)] when X is a minimal model whose multicanonical system $\left|m K_{X}\right|$ is base-point free for some m. (5.3.3) was suggested to us by Kollár. Both of the conjectures are known to hold if $\operatorname{dim} X \leq 2$.

The main result of this paper, Theorems (5.6), (5.7) (see them for the precise statements), claims that each of the two conjectures of X is true if the same is true of the generic fiber X_{η} of ϕ. Note that since X_{η} is a variety over a function field which is nonclosed, one has to make a generalization of (5.3.3) (see (5.3.4)). The proofs

[^0]Supported in part by an NSF grant.

[^0]: Received 15 November 1989. Revision received 3 August 1990.

