LOCAL SOLVABILITY OF FIRST ORDER LINEAR OPERATORS WITH LIPSCHITZ COEFFICIENTS

JORGE HOUNIE

1. Introduction. Consider the differential operator of order one with smooth complex coefficients

$$\frac{\partial}{\partial t} + \sum_{j=1}^{n} a_j(x, t) \frac{\partial}{\partial x_j} + c(x, t)$$

defined in a neighborhood of the origin of \mathbb{R}^{n+1} . After a local change of variables, it can be put in the form

$$L = \frac{\partial}{\partial t} + i \sum_{j=1}^{n} b_j(x, t) \frac{\partial}{\partial x_j} + c(x, t)$$
(1.1)

with $b_j(x, t)$ smooth and real. In [5] Nirenberg and Treves introduced condition (\mathcal{P}), later known to be equivalent to local solvability, and proved that it implies that equation

$$Lu = f$$

can be solved in a neighborhood U of the origin choosing u in the Sobolev space $H^{-1}(U)$ for $f \in L^2(U)$. Later, Treves [7] improved this result showing that u can be taken in $L^2(U)$ and relaxed the regularity hypothesis on the coefficients, requiring that $b_j(x, t)$ be of class \mathscr{C}^2 and c(x, t) be measurable and bounded. The present article shows that Lipschitz continuity of $b_j(x, t)$ is enough to obtain L^2 solvability and that the solution u can be defined on a whole strip $|t| < \varepsilon$. More precisely

THEOREM 1.1. Assume that L given by (1.1) is defined on $\mathbb{R}_x^n \times \mathbb{R}_t$ with real Lipschitz coefficients $b_j(x, t)$ on the principal part and c(x, t) complex, measurable and bounded. If L verifies condition (P), there exist $\varepsilon_0 > 0$ and C > 0 such that for every positive $\varepsilon < \varepsilon_0$ there exists a continuous linear operator

$$G_{\varepsilon}: L^{2}(\mathbb{R}^{n} \times (-\varepsilon, \varepsilon)) \to L^{2}(\mathbb{R}^{n} \times (-\varepsilon, \varepsilon))$$

with operator norm $||G_{\varepsilon}|| < C\varepsilon$ such that

 $LG_{\varepsilon}f = f, \qquad f \in L^{2}(\mathbb{R}^{n} \times (-\varepsilon, \varepsilon))$

in the sense of distributions.

Received 26 January 1990. Author partly supported by CNPq.