FAMILIES OF 'FIRST EIGENFUNCTIONS' FOR SEMILINEAR ELLIPTIC EIGENVALUE PROBLEMS

MARTIN SCHECHTER AND KYRIL TINTAREV

1. Introduction. In the paper [4] we considered the following problem. Let H be an infinite dimensional Hilbert space, and let g(u) be a continuous Frechet differentiable map $H \to \mathbb{R}$. Let

(1.1)
$$S_t = \{ u \in H | ||u||^2 = t \}$$

and

(1.2)
$$\gamma(t) = \sup_{u \in S_t} g(u)$$

The function (1.2) has an obvious meaning when $\Omega \subset \mathbb{R}^n$ is a bounded open set, $H = H_0^1(\Omega)$,

$$\|u\|^2 = \int_{\Omega} |\nabla u(x)|^2 dx$$

and

$$g(u)=\int_{\Omega}u(x)^2\ dx$$

Then the supremum (1.2) is attained for each t > 0 on a multiple of the first eigenfunction of

$$-\Delta u = \lambda u, \qquad u \in H^1_0(\Omega).$$

In [4] we used the expression $\gamma(t)$ given by (1.2) to study semilinear eigenvalue problems. The conclusions of [4] can be summarized as follows:

THEOREM 1.1. Assume that

- (i) g(u) is weakly continuous in H.
- (ii) g(u) does not have a local maximum in $H \setminus \{0\}$.

(iii) (g'(u), u) is continuous in H.

Received 4 June 1990. Research supported in part by an NSF grant.