EXPLICIT FORMULA FOR THE SOLUTION OF CONVEX CONSERVATION LAWS WITH BOUNDARY CONDITION

K. T. JOSEPH AND G. D. VEERAPPA GOWDA

1. Introduction. We consider the mixed initial boundary value problem for strictly convex conservation laws

$$u_t + f(u)_x = 0 (1.1)$$

in x > 0, t > 0, with initial condition

$$u(x,0) = u_0(x). \tag{1.2}$$

The boundary condition is prescribed in the sense of Bardos, Leroux and Nedelec [1]. Let $u_b(t)$ be a given bounded function, then this condition requires u(0, t) to satisfy the following:

$$\sup_{k \in I(u(0,t), u_b(t))} \left\{ \operatorname{Sgn}(u(0,t) - k)(f(u(0,t)) - f(k)) \right\} = 0 \quad \text{a.e. } t > 0,$$

where

$$I(u(0, t), u_b(t)) = [Min\{u(0, t), u_b(t)\}, Max\{u(0, t), u_b(t)\}].$$

When f(u) is strictly convex, i.e., when f''(u) > 0, this condition is equivalent to (see Le Floch [3]) saying:

either

or
$$\begin{array}{c} u(0, t) = \overline{u}_b(t) \\ f'(u(0, t)) \leq 0 \text{ and } f(u(0, t)) \geq f(\overline{u}_b(t)) \end{array}$$
(1.3)

where

$$\overline{u}_b(t) = \operatorname{Max}\{u_b(t), \lambda\}$$
(1.4)

and λ is the unique point where f'(u) changes sign. Because of the strict convexity of f, f attains its minimum at λ , i.e, $f(\lambda) = \inf f(u)$.

Received 6 April 1990.