L² BOUNDEDNESS OF OSCILLATORY INTEGRAL OPERATORS

YIBIAO PAN

1. Introduction. In this paper, we give a solution to a problem about the L^2 boundedness of certain oscillatory integral operators, which was proposed by D. H. Phong and E. M. Stein in [PS].

The operators we study here are of the form

$$(Tf)(x) = \int_{\mathbb{R}^n} e^{i(Bx, y)} K(x - y) f(y) \, dy \tag{1.1}$$

where (Bx, y) is a real bilinear form, and rank(B) = k, K is a function which is smooth away from the origin, homogeneous of degree -(n - k).

Problem. When are the operators in (1.1) bounded operators on $L^2(\mathbb{R}^n)$?

Here is some background of this problem. This type of operator originated from the study of the singular Radon transform in the model case by Phong and Stein. For operators

$$f \to p.v. \int_{\mathbb{R}^n} e^{i(Bx, y)} K(x - y) f(y) \, dy, \qquad (1.2)$$

where K is C^{∞} away from the origin, coincides with a homogeneous function of degree $-\mu$ for large |x|, with a homogeneous function of degree -n for small |x|, and satisfies the cancellation condition

$$\int_{|\mathbf{x}|=\varepsilon} K(\mathbf{x}) \, d\sigma(\mathbf{x}) = 0 \tag{1.3}$$

for ε small, Phong and Stein showed that if $\mu > n - rank(B)$, then these operators are bounded on $L^2(\mathbb{R}^n)$.

Clearly, in the problem mentioned above, the kernel functions are homogeneous of critical degree, i.e., $\mu = n - rank(B)$. In fact, when rank(B) = 0 ($\mu = n$), these operators are simply the classical singular integral operators, by the theorem of

The author was supported in part by a Sloan Doctoral Fellowship.

Received 6 February 1990. Revision received 12 May 1990.