AFFINE GRASSMANNIAN HOMOLOGY AND THE HOMOLOGY OF GENERAL LINEAR GROUPS

WOLFRAM GERDES

1. Introduction. For more than two decades algebraic geometrists have been looking for a cohomology theory defined at least for quasi-projective schemes over some base scheme S often refered to as Motivic Cohomology. More recently, Beilinson conjectured that Motivic Cohomology might be taken as the hypercohomology of certain sheaves of complexes, which should all be defined functorially on quasi-projective schemes subject to a certain set of axioms. Since then various candidates for such complexes were discovered. Among them is Bloch's complex [1], which computes the so-called higher Chow groups, as well as a linear version of it, the Grassmannian complex of [2], which gives the so-called Grassmannian Homology groups.

The paper is organized as follows.
Section 1 replaces the Grassmannian Homology complex of [2] by a different (affine) version to relate the Grassmannian Homology groups more naturally to Bloch's higher Chow groups. The motivation to study those Grassmannian Homology groups originated from a conjectured isomorphism between them and Bloch's higher Chow groups speculated in [2]. In fact the affine Grassmannian Homology complex is a subcomplex of Bloch's complex z(Speck, *) [1], but unfortunately, the inclusion of complexes does not induce an isomorphism of homology groups. We will show in a later article [4] that the Grassmannian Homology groups are too large as it can be demonstrated on the indecomposable part $K_{3}(k)$. However, the Grassmannian Homology groups are still tied to algebraic K-theory via their relation to the homology of general linear groups. Namely, we have

Theorem 3.5. There is an isomorphism

$$
{ }^{A} \mathrm{GH}_{q}^{p} \cong H_{p+q}\left(\operatorname{cone}\left({ }^{H} \mathrm{CG}_{*}^{p} \xrightarrow{i}{ }^{P} \mathrm{CG}_{*}^{p}\right)\right) \cong H_{p+q}\left(G L_{p}(k), G L_{p-1}(k)\right) .
$$

In 4.3 we also show that this isomorphism is induced by the Chern class map $c h^{p}$ of [2] after extending its construction to the case of the relative homology of the pair $\left(G L_{p}, G L_{p-1}\right)$.

Acknowledgements. This paper is part of my thesis written at MIT. I would like to thank my advisor Bob MacPherson for many inspiring and stimulating discussions and for his steady encouragement.

