UNIQUE CONTINUATION AND REGULARITY AT THE BOUNDARY FOR HOLOMORPHIC FUNCTIONS

SERGE ALINHAC, M. S. BAOUENDI*, and LINDA PREISS ROTHSCHILD*

§0. Introduction and main results. The function $f(z)=\exp \left(-1 / z^{1 / 3}\right)$ is holomorphic in the upper half-plane, smooth in its closure, and vanishes of infinite order at the origin. We shall show (Theorem 1) that if a function h has these properties but also maps an interval containing the origin into a nonsingular C^{2} curve, then h must vanish identically. When the curve is real analytic this reduces to the Schwarz reflection principle. We state our first result for a vector valued function.

We recall that if M is a submanifold of \mathbb{C}^{n} of class C^{1}, we say that M is totally real if $T_{m} \cap J T_{m}=\{0\}$ for all $m \in M$, where T_{m} is the tangent space of M at m and J is the usual multiplication by $\sqrt{-1}$.

We define the Lipschitz space $\Lambda_{\alpha}\left(\mathbb{R}^{n}\right), \alpha>0$, as in, e.g., Stein [12]. In particular, $f \in \Lambda_{1}\left(\mathbb{R}^{n}\right)$ if $f \in L^{\infty}\left(\mathbb{R}^{n}\right)$ and there is a constant A such that $\| f(x+t)+f(x-t)-$ $2 f(x) \|_{\infty} \leqslant A|t|$. Similarly $f \in \Lambda_{k}\left(\mathbb{R}^{n}\right), k$ a positive integer greater than 1 , if $\partial f / \partial x_{j} \in$ $\Lambda_{k-1}\left(\mathbb{R}^{n}\right)$. For α nonintegral, $\Lambda_{\alpha}\left(\mathbb{R}^{n}\right)$ is the usual Hölder space. A similar definition can be given for $\Lambda_{\alpha}(F)$, where F is a closed set of \mathbb{R}^{n} with sufficiently smooth boundary.

Our first theorem gives both regularity and unique continuation results.
Theorem 1. Let Ω be an open neighborhood of 0 in $\mathbb{C}, \Omega^{+}=\Omega \cap\{w=s+i t$: $t>0\}$, and M^{\prime} a totally real manifold of \mathbb{C}^{n} of class $C^{k}, k \geqslant 2$, with $0 \in M^{\prime}$. If $h: \overline{\Omega^{+}} \rightarrow \mathbb{C}^{n}$ is continuous and holomorphic in Ω^{+}and maps $\overline{\Omega^{+}} \cap \mathbb{R}$ into M^{\prime} then $h \in \Lambda_{k}\left(\overline{\mathbf{\Omega}^{\prime+}}\right)$ for every open Ω^{\prime} relatively compact in $\boldsymbol{\Omega}$. Furthermore, if h vanishes of infinite order at the origin, i.e., $h(w)=O\left(|w|^{N}\right)$ for every N, then h vanishes identically in the connected component of the origin in $\overline{\Omega^{+}}$.

If M is a totally real manifold of class $C^{2}, M \subset \mathbb{C}^{p}$ of real dimension $p, 0 \in M$, then M is given locally (see Lemma 1.1) by

$$
\begin{equation*}
M=\left\{w \in \mathbb{C}^{p}: \operatorname{Im} w=\varphi(\operatorname{Re} w)\right\} \tag{0.1}
\end{equation*}
$$

for some $\varphi \in C^{2}(U), U$ a neighborhood of the origin in \mathbb{R}^{p}, φ real valued with $\varphi(0)=\varphi^{\prime}(0)=0$. A wedge \mathscr{W} of edge M is then defined as a set of the form

$$
\begin{equation*}
\mathscr{W}=\{w \in \mathcal{O}: \operatorname{Im} w-\varphi(\operatorname{Re} w) \in \Gamma\} \tag{0.2}
\end{equation*}
$$

Received October 3, 1989.
*Supported by NSF Grant DMS 8901268.

