ON UNITARITY OF SPHERICAL REPRESENTATIONS

JESPER BANG-JENSEN

0. Introduction. Let G be a semisimple Lie group with finite center and choose a maximal compact subgroup K in G. Let $g_0 = f_0 + p_0$ be the corresponding Cartan decomposition of $g_0 = \text{Lie}(G)$. One of the main unsolved problems in the theory of semisimple Lie groups is to classify the set of unitary irreducible representations of G up to equivalence. Although a lot of progress has been made in recent years the methods used are still case by case analysis. The problem has two steps; namely, to exclude certain representations and to prove that the remaining representations are unitary. This work is aimed at the first step.

So let (π, H_{π}) be an irreducible representation of G. By a well-known result of Harish Chandra, H_{π} is equivalent to a unitary representation if and only if the corresponding (g, K)-module, X_{π} , admits a positive definite invariant Hermitian form, say ω . It is well known (in terms of the Langlands data) which X_{π} 's admit an invariant Hermitian form. So to decide if (π, H_{π}) is unitary one "only" has to check if ω is positive definite on all K-types in X_{π} . The main obstacle here is of course that ω is only implicitly given except in a few low rank cases. Now very often ω is obtained by inducing an invariant Hermitian form on a spherical (i.e., a representation having a K-fixed vector) representation on a smaller (parabolic) subgroup. Hence it is important to understand the spherical representations. The work of Vogan [9] for GL(n) and Barbasch [2] for G complex and classical suggests that one only has to know the signature of ω on a very small (on the order of rank(G)) set of K-types, but it is not known which K-types to consider.

In this paper we define a small set of K-types S(G). These are in some sense the smallest nontrivial K-types that can occur in a spherical representation. Also if (π, H_{π}) is a nontrivial spherical representation, then at least one K-type in S(G) will occur in H_{π} . Moreover the set is closed under restriction to parabolic subgroups in the following sense: if $MN \subseteq G$ is the Levi decomposition of a parabolic subgroup and $\mu \in S(G)$, then $\mu|_{M \cap K}$ breaks up into a sum of the trivial $K \cap M$ -type, a sum of $K \cap M$ -types in S(M) and a sum of nonspherical $M \cap K$ -types. The main motivation for choosing this set of K-types is that if G is simple, classical and has split rank one, then S(G) is just the irreducible subrepresentations of \mathfrak{p} (Proposition 3.2) and an irreducible spherical representation with integral infinitesimal character admitting an invariant Hermitian form is unitarizable if and only if the form is positive on the μ -isotypic space for μ an irreducible subrepresentation of \mathfrak{p} . Moreover for G general and $J^{G}(\nu)$ (notation (1.10)) an irreducible spherical representation admitting an invariant Hermitian form such that $||\nu|| \gg 0$, then $J^{G}(\nu)$ is not

Received April 29, 1989. Revision received December 7, 1989.