HYPERBOLIC SURFACES IN ₱³

ALAN MICHAEL NADEL

CONTENTS

Э.	Introduction	749
1.	Preliminaries on meromorphic differential geometry	750
2.	The Wronskian	751
3.	Statement of Siu's Theorem	753
4.	Computation of the pole order of a meromorphic connection	754
5.	Construction of meromorphic connections with low pole order	755
6.	Degeneracy of entire holomorphic curves in certain hypersurfaces	756
7.	An explicit family of smooth hyperbolic surfaces in \mathbb{P}^3	760
8.	Computation of curve genus	763
9.	Higher dimensional algebraic families of smooth hyperbolic surfaces	
	in \mathbb{D}^3	769

0. Introduction. Complex projective varieties which are hyperbolic in the sense of Kobayashi [Ko] have attracted recent attention because of their conjectured diophantine properties. For example, Lang [La1, La2] has conjectured (among other things) that any hyperbolic complex projective varity which is defined over a number field K can contain at most finitely many points which are rational over K; this conjecture may be regarded as a higher dimensional analogue of the Mordell conjecture. There are, however, very few known examples of hyperbolic varieties.

The purpose of this paper is to construct smooth hyperbolic surfaces in \mathbb{P}^3 . Previously the only known examples of such surfaces were the Brody-Green surfaces [BrGr] defined in homogeneous coordinates W, X, Y, Z by

$$W^{d} + X^{d} + Y^{d} + Z^{d} + \varepsilon (WX)^{d/2} + \varepsilon (YZ)^{d/2} = 0$$

where $d \ge 50$ is even and $\varepsilon \ne 0$ is sufficiently small.

We consider smooth surfaces $M \subset \mathbb{P}^3$ of degree d such that each monomial in the degree d homogeneous defining polynomial of M contains one of the homogeneous coordinates raised to the pth power for some p > (3d + 10)/4. We show that, for such a surface, the image of any holomorphic map $\mathbb{C} \to M$ is contained in certain curves of genus ≤ 1 and degree $\leq d^2$ (see Section 6); in particular, M is hyperbolic iff it contains no such curves. We obtain a result for certain higher dimensional hypersurfaces as well (Theorem 6.1).

Received January 18, 1988. Revision received October 10, 1988. Research supported by a Sloan Doctoral Dissertation Fellowship.