VARIATIONS OF HODGE STRUCTURE OF MAXIMAL DIMENSION

JAMES A. CARLSON, AZNIF KASPARIAN, AND DOMINGO TOLEDO

1. Introduction. A variation of Hodge structure is a holomorphic map with values in a Griffiths period domain which satisfies the differential equation

(1.1)
$$\partial F^p / \partial z_i \subset F^{p-1}.$$

The purpose of this paper is to give a general (and sharp) bound on the rank of such mappings. That a bound exists is clear from general principles. Equation (1.1) defines a subbundle T^h of the holomorphic tangent bundle of the period domain to which the image of a variation f is tangent, and its fiber dimension gives a first bound on the rank of f [8]. In general, however, the distribution defined by the horizontal tangent bundle T^{h} is nonintegrable, so that additional restrictions must hold. This is the case whenever D is not of hermitian type. In the simplest case (weight two with $h^{2,0} > 1$) one has the result of $\lceil 1, 5 \rceil$:

(1.2)
$$\operatorname{rank} df \leq \frac{1}{2} \dim T^{h},$$

or, more explicitly,

(1.3)
$$\operatorname{rank} df \leq \frac{1}{2}h^{2,0}h^{1,1}$$

The general bound is similar to this: it is given by a piecewise quadratic function of the Hodge numbers for domains of fixed Lie type.

To give a precise statement, fix a period domain D which classifies structures of weight w, let h^q stand for $h^{p,q}$, and set

(1.4)

$$m = [w/2]$$

$$m^* = [(w - 1)/2]$$

$$d^i = h^i h^{i+1} \text{ for } i < m^*$$

$$d^{m^*} = \frac{1}{2} h^{m^*} (h^{m^*} + 1) \text{ for } w \text{ odd (Type } C)$$

$$d^{m^*} = h^{m^*} [h^{m^*+1}/2] + \varepsilon \text{ for } w \text{ even, (Types } B, D),$$

where $\varepsilon = 0$ if $h^{m,m} = h^{m^{*+1}}$ is even (Type D), $\varepsilon = 1$ if $h^{m,m}$ is odd (type B), and where $h^{m^*} \neq 1$. When $h^{m^*} = 1$, set $d^{m^*} = h^{m^{*+1}}$.

Received April 28, 1988. Research partially supported by the National Science Foundation and the Max Planck Institut für Mathematik.