VARIATIONS OF HODGE STRUCTURE OF MAXIMAL DIMENSION

JAMES A. CARLSON, AZNIF KASPARIAN, AND DOMINGO TOLEDO

1. Introduction. A variation of Hodge structure is a holomorphic map with values in a Griffiths period domain which satisfies the differential equation

$$
\begin{equation*}
\partial F^{p} / \partial z_{i} \subset F^{p-1} . \tag{1.1}
\end{equation*}
$$

The purpose of this paper is to give a general (and sharp) bound on the rank of such mappings. That a bound exists is clear from general principles. Equation (1.1) defines a subbundle T^{h} of the holomorphic tangent bundle of the period domain to which the image of a variation f is tangent, and its fiber dimension gives a first bound on the rank of f [8]. In general, however, the distribution defined by the horizontal tangent bundle T^{h} is nonintegrable, so that additional restrictions must hold. This is the case whenever D is not of hermitian type. In the simplest case (weight two with $h^{2,0}>1$) one has the result of $[1,5]$:

$$
\begin{equation*}
\operatorname{rank} d f \leqslant \frac{1}{2} \operatorname{dim} T^{h}, \tag{1.2}
\end{equation*}
$$

or, more explicitly,

$$
\begin{equation*}
\operatorname{rank} d f \leqslant \frac{1}{2} h^{2,0} h^{1,1} . \tag{1.3}
\end{equation*}
$$

The general bound is similar to this: it is given by a piecewise quadratic function of the Hodge numbers for domains of fixed Lie type.

To give a precise statement, fix a period domain D which classifies structures of weight w, let h^{q} stand for $h^{p, q}$, and set

$$
\begin{align*}
m & =[w / 2] \\
m^{*} & =[(w-1) / 2] \\
d^{i} & =h^{i} h^{i+1} \text { for } i<m^{*} \tag{1.4}\\
d^{m^{*}} & \left.=\frac{1}{2} h^{m^{*}}\left(h^{m^{*}}+1\right) \text { for } w \text { odd (Type } C\right) \\
d^{m^{*}} & \left.=h^{m^{*}}\left[h^{m^{*}+1} / 2\right]+\varepsilon \text { for } w \text { even, (Types } B, D\right),
\end{align*}
$$

where $\varepsilon=0$ if $h^{m, m}=h^{m^{*}+1}$ is even (Type D), $\varepsilon=1$ if $h^{m, m}$ is odd (type B), and where $h^{m^{*}} \neq 1$. When $h^{m^{*}}=1$, set $d^{m^{*}}=h^{m^{*}+1}$.

Received April 28, 1988. Research partially supported by the National Science Foundation and the Max Planck Institut für Mathematik.

