CONSTRUCTION OF P.S.H. FUNCTIONS ON WEAKLY PSEUDOCONVEX DOMAINS

JOHN ERIK FORNAESS AND NESSIM SIBONY

1. Introduction. Let Ω be a smoothly bounded pseudoconvex domain. An example due to Kohn-Nirenberg [10] shows that even when $\partial \Omega$ is real analytic, a point $p \in \partial \Omega$ does not always have a holomorphic separating function.

When $\Omega \subset \mathbb{C}^2$ is of finite type, Bedford and Fornaess [1] proved the existence of a continuous mapping

$$F: \partial \Omega \times \bar{\Omega} \to \mathbb{C}$$

such that for each $p \in \partial \Omega$ the function $F(p, \cdot) \in A(\overline{\Omega}) = \mathscr{C}(\overline{\Omega}) \cap H(\Omega)$ and is a peak function at p.

In this paper we produce a different proof of this result. Bedford and Fornaess used a blowing up technique, here our approach is to construct entire functions dominated by subharmonic functions, using L^2 methods.

The main object of the paper is the construction of plurisubharmonic peak functions with good estimates. More precisely we obtain the following theorem.

THEOREM A. Let $\Omega \subset\subset \mathbb{C}^2$ be a pseudoconvex domain with smooth boundary and finite type 2k. There exists a neighborhood U of $\overline{\Omega}$ and a constant C such that for every $\zeta \in \partial \Omega$ there is a plurisubharmonic function $\varphi_r(z)$ on U verifying

(i)
$$|\varphi_{\zeta}(z) - \varphi_{\zeta}(z')| \leq C|z - z'| \forall z, z' \in U$$

(ii)
$$\varphi_{\zeta}(z) \leqslant -|z-\zeta|^{2k} \ \forall z \in \Omega, \ \varphi_{\zeta}(\zeta) = 0.$$

We give also a similar result for convex domains of finite type in \mathbb{C}^n ; see Theorem 4.1.

As a consequence, using a result due to D. Catlin, we get a simple proof of sharp subelliptic estimates for the $\bar{\partial}$ -Neumann problem when Ω is a domain of finite type in \mathbb{C}^2 or a convex domain in \mathbb{C}^n . Another approach to this problem is given in Fefferman-Kohn [7].

1. Good holomorphic coordinate systems

PROPOSITION 1.1. Let $\Omega \subset\subset \mathbb{C}^2$ be a domain with \mathscr{C}^{∞} boundary and let k be an integer. Then there exists a \mathscr{C}^{∞} map $\Phi \colon \mathbb{C}^2(z,w) \times \partial \Omega(\zeta) \to \mathbb{C}^2(\tilde{z},\operatorname{Im} \tilde{w},\zeta)$ on $\{|\tilde{z},\operatorname{Im} \tilde{w}|<1\} \times \partial \Omega$ with the following properties:

Received June 7, 1988. The first author has been partially supported by an NSF grant