ALGEBRAIC VARIETIES PRESERVED BY GENERIC FLOWS

VALERY LUNTS

1. Introduction. Let A_n be the Weyl algebra of linear differential operators with polynomial coefficients on Cⁿ. The algebra A_n is generated by y_i , ∂_{y_i} , i = 1, ..., n, which stand for multiplication by the variable y_i and differentiation with respect to y_i . Recall the following filtration of A_n :

$$F^0 \subset F^1 \subset \cdots,$$

where F^k is spanned by monomials in $\{y_i, \partial_{y_i}\}$ of total degree $\leq k$. Let $D \in \mathbf{A}_n$ be such that $D \in F^{k+1}$, $D \notin F^k$. Then the symbol $\sigma(D)$ is the image of D in F^{k+1}/F^k . Put $\sigma(y_i) = x_i, \sigma(\partial_{y_i}) = x_{i+n}$. Then the associated graded algebra gr $A_n =$ $\bigoplus F^{k+1}/F^k$ is isomorphic to the commutative polynomial ring $\mathbb{C}[x_1, \ldots, x_{2n}]$.

Choose $D \in A_n$ and consider the cyclic left A_n -module $M = A_n/A_nD$. Our main result is that for "almost all" D's the module M is irreducible. If $n \ge 2$, then M is not holonomic. Hence "most" irreducible A_n-modules are not holonomic.

Let us explain the expression "for almost all" D's.

Denote by Σ^k the space of homogeneous polynomials in the x, of degree k. We say that a property S holds for a generic P in Σ^k if the set $\{P \in \Sigma^k | S \text{ does not hold}\}$ for P} is contained in a countable number of hypersurfaces in Σ^k .

Let $k \ge 4$. Consider the following property S of polynomials $P \in \Sigma^k$: For any $D \in A_n$ such that $\sigma(D) = P$, the left ideal $A_n D$ is maximal. We prove that S holds for a generic $P \in \Sigma^k$.

In [BL] it was shown how the above algebraic problem can be solved in geometric terms. Let us recall the main idea.

The space \mathbb{C}^{2n} is a symplectic manifold with the symplectic form

$$\omega = \sum_{i=1}^n dx_i \wedge dx_{i+n}.$$

To every function P on \mathbb{C}^{2n} there is associated its Hamiltonian vector field

$$h_{P} = \sum_{i=1}^{n} \left(\frac{\partial P}{\partial x_{i+n}} \right) \partial_{x_{i}} - \left(\frac{\partial P}{\partial x_{i}} \right) \partial_{x_{i+n}}.$$

Definition. We say that a vector field ξ on \mathbb{C}^{2n} preserves a subvariety $Y \subset \mathbb{C}^{2n}$ if ξ_p is tangent to Y at every smooth point $p \in Y$.

Received July 11, 1988, Revision received November 16, 1988.