MODULI SPACES OF DEGREE d HYPERSURFACES IN \mathbb{P}_n

FRANCES KIRWAN

Let $\mathcal{M}(n,d)$ denote the moduli space of stable hypersurfaces of degree d in complex projective space \mathbb{P}_n . If $\mathbb{C}[X_0,\ldots,X_n]_d$ is the space of all homogeneous polynomials of degree d in the variables X_0,\ldots,X_n then $\mathcal{M}(n,d)$ is the quotient by $SL(n+1;\mathbb{C})$ of the open subset of $\mathbb{P}(\mathbb{C}[X_0,\ldots,X_n]_d)$ consisting of all points which are stable for the action of $SL(n+1;\mathbb{C})$ (see [M2]). Let $\overline{\mathcal{M}}(n,d)$ be the projective "quotient" variety which geometric invariant theory associates to the action on $\mathbb{P}(\mathbb{C}[X_0,\ldots,X_n]_d)$ of $SL(n+1;\mathbb{C})$. Then $\overline{\mathcal{M}}(n,d)$ is a compactification of $\mathcal{M}(n,d)$ and hence also of the moduli space of nonsingular hypersurfaces of degree d in \mathbb{P}_n . The first aim of this paper is to show that the Betti numbers of $\mathcal{M}(n,d)$ and the intersection Betti numbers of $\overline{\mathcal{M}}(n,d)$ stabilise as $d\to\infty$ for fixed n; more precisely that

$$(1.1) Hi(\mathcal{M}(n,d); \mathbb{Q}) \cong IHi(\overline{\mathcal{M}}(n,d); \mathbb{Q}) \cong Hi(BGL(n+1; \mathbb{C}); \mathbb{Q})$$

when i < 2h(n, d), where IH denotes Goresky-MacPherson intersection homology with respect to the middle perversity and

(1.2)
$$h(n,d) \sim \left(\frac{nd}{n+1}\right)^n / n! \quad \text{as} \quad d \to \infty.$$

(This is proved in §2: see Theorem 2.2 and Lemma 2.1). Here $BGL(n + 1; \mathbb{C})$ is the classifying space of the complex general linear group $GL(n + 1; \mathbb{C})$. Its cohomology ring is a polynomial ring on n generators in degrees 2, 4, 6, ..., 2n.

dim
$$H_i(BGL(n+1;\mathbb{C});\mathbb{Q})$$

i =	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	•	•	•
$\overline{n=1}$	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1			•
2	1	0	1	0	2	0	2	0	3	0	3	0	4	0	4			
3	1	0	1	0	2	0	3	0	4	0	5	0	7	0	8			
4	1	0	1	0	2	0	3	0	5	0	6	0	9	0	11			
5	1	0	1	0	2	0	3	0	5	0	7	0	10	0	13			
:																		

Received November 18, 1985. Revision received June 22, 1988.