## ON POSITIVE SOLUTIONS OF SECOND-ORDER ELLIPTIC EQUATIONS, STABILITY RESULTS, AND CLASSIFICATION

## YEHUDA PINCHOVER

**0.** Introduction. Let P be a second-order uniformly elliptic operator defined in a domain  $\Omega \subseteq \mathbb{R}^n$ . Let  $\mathscr{C}_P(\Omega)$  be the convex cone of all positive solutions of the equation

$$Pu = 0 \quad \text{in } \Omega. \tag{0.1}$$

If one assumes that P or  $\Omega$  satisfies some very special properties, e.g., that P and  $\Omega$  are invariant under rotations or translations, then one can get an explicit description of the structure of  $\mathscr{C}_{P}(\Omega)$  and also delicate perturbation results (see, for example, [2], [4], [8], [9], [11]).

In this paper our aim is different. We wish to discuss some general properties of  $\mathscr{C}_{P}(\Omega)$  for general P and  $\Omega$  and to obtain some information on the structure of  $\mathscr{C}_{P}(\Omega)$ . The paper is divided into four sections. In section 1 we shall give some basic definitions, fix notations, and recall briefly some known results. In section 2 we shall compare the structure of  $\mathscr{C}_{Pi}(\Omega)$ , i = 1, 2, where  $P_2$  is a "small" perturbation of  $P_1$ . It turns out that in the general case a "small" perturbation is a change of the coefficients of  $P_1$  in a compact set in  $\Omega$ . We shall see in section 3 that under some assumptions the analogue for a small perturbation for the case  $\Omega = \mathbb{R}^n$  is a perturbation of the form  $P_2 = P_1 + W$ , where  $W \in L^1(\mathbb{R}^n)$ . In section 4 we shall study the question of stability and instability of  $\mathscr{C}_{P}(\Omega)$  by investigating the behavior of  $\mathscr{C}_{P+tW}(\Omega)$  when  $t \in \mathbb{R}$  is varied and W is a fixed function.

We shall confine ourselves to classical solutions. The results are also valid for weak and strong solutions; the proofs differ only in minor details from the proofs for the classical solutions. Some of the results in this paper were announced first in [9]. I would like to remark that similar results were obtained by M. Murata for Schrödinger operators ([8]; see also [3]).

Acknowledgements. The paper is based on part of the author's Ph.D. thesis, completed in 1986 at the Hebrew University of Jerusalem [10]. I wish to express my deep gratitude to my thesis advisor, Professor Shmuel Agmon, for the encouragement, support, and help he gave me.

Received October 22, 1987.