ON INTERTWINING OPERATORS FOR $GL_N(F)$, F A NONARCHIMEDEAN LOCAL FIELD

PHILIP KUTZKO AND DAVID MANDERSCHEID

Since the purpose of this paper is rather technical in nature, it may be of some value to begin with an example, by way of motivation. Let E/F be a finite extension of fields and let V be a finite-dimensional vector space over E. Set $A_E = \operatorname{End}_E(V)$ and $A_F = \operatorname{End}_F(V)$, so that A_E is naturally a subalgebra of A_F , and let \langle , \rangle_F be the bilinear form on $A_F \times A_F$ defined by $\langle x, y \rangle_F = \operatorname{tr}(xy)$, where tr denotes the usual matrix trace to F. Then \langle , \rangle_F is nondegenerate and so may be used to identify A_F with its dual $\operatorname{Hom}(A_F, F)$, this identification assigning an element x in A_F to the functional φ_x given by $\varphi_x(y) = \langle x, y \rangle_F$ for y in A_F . Now the map res_{E/F} that restricts a functional φ on A_F to A_E clearly maps $\operatorname{Hom}_F(A_F, F)$ onto $\operatorname{Hom}(A_E, F)$; furthermore, if α is any element of E for which $E = F[\alpha]$, then ker(res_{E/F}) is identified, under the identification above, with the image of A_F under the map $A_{\alpha}: A_F \to A_F$ defined by $A_{\alpha}(X) = \alpha X \alpha^{-1} - X$. Thus, we have an isomorphism of $\operatorname{Hom}_F(A_E, F)$ with $A_F/\operatorname{Im} A_{\alpha}$.

Now, if E/F is separable, then the restriction of \langle , \rangle_F to A_E remains nondegenerate and, in fact, $A_F = A_E \perp \text{Im } A_{\alpha}$. Thus, we may identify $\text{Hom}_F(A_E, F)$ with A_E and, indeed, we have the commutative diagram

$$\begin{array}{c} A_{F} \xrightarrow{\Phi} \operatorname{Hom}_{F}(A_{F}, F) \\ P \downarrow \qquad \qquad \downarrow^{\operatorname{res}_{E/F}} \\ A_{E} \xrightarrow{\Phi} \operatorname{Hom}_{F}(A_{E}, F), \end{array}$$

where P is the orthogonal projection onto A_E and Φ is the map $x \mapsto \varphi_x$.

However, if E/F is not separable, then the restriction of \langle , \rangle_F to A_E is zero. Thus it is of interest to know whether it is possible to replace the map P in the diagram above. Appropriately phrased, this question becomes, Does there exists an (A_E, A_E) -bimodule map S_{α} : $A_F \to A_F$ for which the following sequence is exact?

$$A_F \xrightarrow{A_{\alpha}} A_F \xrightarrow{S_{\alpha}} A_F \xrightarrow{A_{\alpha}} A_F. \tag{0.1}$$

The purpose of this paper is to describe such a map and to discuss its arithmetical properties in case F is a nonarchimedean local field. In particular,

Received December 15, 1986. Research of first author supported in part by NSF grant DMS83-01946. Research of second author supported in part by NSF grant DMS84-00892 and an NSF Mathematical Sciences Postdoctoral Fellowship.